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Atmospheric chemists are interested in a wide range of issues
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We need chemical transport models (CTMs) to: -y

A Understand processes
A Interpret observations
Urban smog A Make forecasts and projections

Plume dispersion Acid rain
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The chemical transport modeling problem

transport
chemistry
aerosol microphysics
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Solve continuity equation for species i:
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local trend in transport emissions, deposition,
concentration (flux divergence) chemical and aerosol processes

Challenges:
A Chemical coupling between large numbers of species
A Coupling between transport and chemistry on all scales



Example: GEOS-Chem CTM simulation of US ozone air quality (Aug-Sep 2013)
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A GEOS-Chem off-line CTM driven by NASA-GEOS assimilated meteorological data
A 0.25°x0.3125° horizontal resolution, 72 vertical levels, 5-minute time steps

A Coupled system of 200 chemical species to describe ozone-aerosol chemistry

A Evaluated with aircraft/sonde/surface observations (aircraft data as circles)

Yu et al. [2016]



The chemical continuity equation

Represent 3-D fields of concentrations of K chemicals coupled by chemistry;
number densities [cm=3] n = (n;, é&,)" or mixing ratios [mol per mol of air] C = (C,, &,)T

i wind
volume " ny(x) U(x) 3 3
element i | —> Flux F =nU = Cin,U
/;__999________ where n, is air number density

Within volume element: local production P; and loss L,
(emission, deposition, chemistry, aerosol processes)

Eulerian forms of continuity equation (fixed frame of reference):
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Lagrangian form (moving frame of reference):
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Aerosol microphysics included in local terms P; and L,

n =(n,, é,)" describe concentrations in different size bins or modes

Nucleation, condensation, coagulation are source/sink terms for the different bins

Emissions of Gaseous Precursors Emissions of Primary Particles

Heterogeneous Reactions

ICoalesoence

.ﬁ.

Homogeneous
Reactions
(OH, 04, NO,)

Wet Deposition
0.001 0.01 0.1 1 10
L ]

Gas Molecules Cloud Drops




Break down dimensionality of continuity equation by operator splitting

Solve for transport and chemistry separately over time steps gi
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Advection: Chemistry (local processes):.
HG U @1 (Eulerian) dc.
"’ —=P(C) L,(C)
dx . dt
py =U(x,t) (Lagrangian)
C(t) —» C* -»> C(t+q1)
ot o
Advection equations: Chemical equations:
no chemical coupling K-dimensional ODE system

Operator splitting induces error by ignoring couplings between transport and chemistry
over d



Eulerian models partition atmospheric domain into gridboxes

This discretizes the continuity equation in space

f% T g Solve continuity equation for
/} individual gridboxes
_Long::\:ude ) y
V% ‘ APresent computational limit ~ 108 gridboxes
, Aln global models, this implies a grid resolution gx of
T ~ 10-100 km in horizontal and 0.1-1 km in vertical

ACourant number limitatonu gt /gx O 1 ;
in global models, ot ~10%-103 s



Eulerian models often use equal-area or zoomed grids

Equal-area grids: avoid singularities at poles
icosahedral triangular cubed-sphere

Zoomed grids: increase resolution where you need it (or when, in an adaptive grid)

nested stretched




Pressure (hPa)

Vertical coordinate systems

Terrain-following Hybrid sigma-pressure
sigma coordinate system coordinate system

Pressure (hPa)

_ P By —
Sy P =AB HBR
Ps - By
P, = pressure at level k Uy = sigma coordinate
p, = surface pressure A, By = coefficients

pr = pressure at model top
p, = pressure at sea level



Lagrangian models track points in model domain (no grid)
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ATransport large number of points with trajectories from
input meteorological data base (U) over time steps Dt

APoints have mixing ratio or mass but no volume

ADetermine local concentrations in a given volume by
the statistics of points within that volume or by
interpolation

PROS over Eulerian models:
Astable for any wind speed
Ano error from spatial averaging
Aeasy to parallelize
Aeasily track air parcel histories
Aefficient for receptor-oriented problems
CONS:
Aneed very large # points for statistics
Ainhomogeneous representation of domain
Aindividual trajectories do not mix
Acannot do nonlinear chemistry
Acannot be conducted on-line with meteorology



Lagrangian receptor-oriented modeling

Run Lagrangian model backward from receptor location,
with points released at receptor location only

. * flow backward in time
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Lagrangian models track points in model domain (no grid)
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ATransport large number of points with trajectories from
input meteorological data base (U) over time steps Dt

APoints have mixing ratio or mass but no volume

ADetermine local concentrations in a given volume by
the statistics of points within that volume or by
interpolation

PROS over Eulerian models:
Astable for any wind speed
Ano error from spatial averaging
Aeasy to parallelize
Aeasily track air parcel histories
Aefficient for receptor-oriented problems
CONS:
Aneed very large # points for statistics
Ainhomogeneous representation of domain
Aindividual trajectories do not mix
Acannot do nonlinear chemistry
Acannot be conducted on-line with meteorology



Representing non-linear chemistry

Consider two chemicals A and B emitted in different locations, and reacting by

A+ B Y products

Eulerian model Lagrangian model

gridboxes A
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A and B react following A and B never react
the mixing of gridboxes



On-line and off-line approaches to chemical modeling

On-line: coupled to dynamics

GCM conservation equations:
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Off-line: decoupled from dynamics

GCM conservation equations:
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PROs of off-line vs on-line approach:
A computational cost

A simplicity

A stability (no chaos)

A compute sensitivities back in time
CONis:

A no fast chemical-dynamics coupling
A need for meteorological archive

A transport errors

meteorological archive
(averaging time ~ hours)

|

Chemical transport model:
C, /G = &

Chemical data assimilation, forecasts
best done on -line

Chemical sensitivity studies
may best be done off -line




Improving meteorological forecasts through chemical information

Ozone for stratospheric dynamics Aerosols for radiation/precipitation
Ozone columns, profiles GOES aerosol optical depth

PBL heights Chemical tracers of winds
CALIOP lidar aerosol profiles Free tropospheric carbon monoxide (CO)



