Making sense of air quality

Daniel J. Jacob

The industrial revolution and air pollution

"Make great efforts to build China into a strong and prosperous industrialized country under the leadership of the Party and chairman Mao!"

London fog

Aerosols a.k.a. particulate matter (PM) from domestic+industrial coal combustion

"Killer fog" of December 1952 resulted in 10,000 excess deaths

Los Angeles smog

Respiratory problems, vegetation damage due to high surface ozone

vehicles, industry, vegetation

AIR POLLUTION TODAY:

Ozone and fine particulate matter (PM_{2.5}) are the major pollutants

US population exposed to air pollutants in excess of national ambient air quality standards (NAAQS), 2015

US EPA [2017], OECD [2012]

Ozone air quality standards in the US and in the world

Days per year exceeding 70 ppb ozone standard, 2010-2014

TOAR [2017]

How to control ozone pollution? Decrease emissions of nitrogen oxides ($NO_x \equiv NO + NO_2$)

and/or volatile organic compounds (VOCs)

NO_x: efficient combustion (power plants, vehicles) VOCs: inefficient combustion (vehicles, fires), industry, vegetation

...but complicated by non-linear dependence

Ozone production mechanism:

$$RH + OH \xrightarrow{O_2} RO_2 + H_2O \quad (1)$$

$$RO_2 + NO \longrightarrow RO + NO_2$$
 (2)

$$NO_2 + hv \xrightarrow{O_2} NO + O_3$$
 (3)

Ozone production can be limited by reaction (1) (VOC-limited regime) or reaction (2) (NO_x-limited regime)

Sillman et al. [1988]

Ozone (ppb) vs. NO_x and VOC emissions

US is NO_x-limited due to high emissions of biogenic isoprene

OMI satellite observations of formaldehyde (HCHO) columns, May-Aug 2005-2014

China is more complicated: high anthropogenic VOCs

OMI annual mean tropospheric column data, 2006-2007

- VOC emissions collocated with NO_x emissions (combustion) though there is also a large biogenic component
- Glyoxal hotspot over Pearl River Delta from large aromatic emissions

Chan Miller et al. [2016]

NO_x controls are needed to meet current ozone standards ... even if production is locally VOC-limited

- VOC controls will only get you so far until you are limited by biogenic background
- NO_x controls are only way to get to current ozone standards and have side benefits (NO₂ air quality, nitrogen deposition)

NO_x emissions observed from space

http://disc.sci.gsfc.nasa.gov/giovanni

NO_x emission trends observed from space

Verstraeten et al. [2014]

Trend in #days/year with ozone > 70 ppb, summer 2000-2014

Trends of number of days with daily max. 8-hr O₃ > 70 ppb, summer Data extracted on: 2016-10-21

Megacity trends

Models still overestimate surface ozone in Southeast US

A major reason is that the EPA NO_x emission inventory is a factor of 2 too high:

NASA SEAC⁴RS aircraft campaign, Aug Sep 2013

$\rm NO_x$ emissions in US are sufficiently low that VOC oxidation by low- $\rm NO_x$ pathways (poorly understood!) becomes important

Segregation between isoprene and NO_x emissions increases importance of low-NO_x pathways

Travis et al. [2016], Yu et al. [2016]

As ozone standard tightens, the nature of the problem changes

Seasonal dose in excess of 60 ppb [EPA, 2014]

60 ppb exceedances are largest in Intermountain West

Ozone in Intermountain West originates out of N America

Background = ozone present in absence of anthropogenic sources in North America

- Domestic emissions have little influence on intermountain west
- Anthropogenic background contributes ~15 ppb with little day-to-day variability

Zhang et al. [2014]

Intercontinental transport of ozone pollution

2012 OMI NO₂ column, 10¹⁵ molecules cm⁻²

Ozone pollution transport (GEOS-Chem model)

Global tropospheric ozone is rising...and we don't know why Mean 500 hPa ozone in JJA 2013

- Partly natural: stratospheric influence, lightning, wildfires
- Partly anthropogenic: methane, intercontinental pollution, fires, ships, aircraft...

OMI tropospheric ozone column trend, 2005-2016: increasing almost everywhere

Models can reproduce present-day levels but not long-term trends

Hu et al. [2017], TOAR [2017]

Annual mean concentrations of fine particulate matter (PM_{2.5}) inferred from satellite data

van Donkelaar et al. [2010]; Rhode and Muller [2015]

PM_{2.5} composition

Two components dominate PM_{2.5} mass under almost all conditions:

- Sulfate-nitrate-ammonium (SNA)
- Organic carbon (OC)

Formation of sulfate-nitrate-ammonium aerosol

EMISSION

SO₂: coal combustion

NH₃: agriculture

NO_x: fuel combustion

- Sulfuric acid produced from SO₂ oxidation is ~100% incorporated into the aerosol
- Ammonium and nitrate are incorporated as determined by acid-base titration

Three different regimes for SNA aerosol formation

 $[\mathsf{S}(\mathsf{VI})] > [\mathsf{N}(\mathsf{-III})]$

- all ammonia in aerosol
- no nitrate in aerosol

 $[\mathsf{S}(\mathsf{VI})] + [\mathsf{N}(\mathsf{V})] > [\mathsf{N}(\mathsf{-III})] > [\mathsf{S}(\mathsf{VI})]$

- almost all ammonia in aerosol
- nitrate partly in aerosol

 $[\mathsf{S}(\mathsf{VI})] + [\mathsf{N}(\mathsf{V})] < [\mathsf{N}(\mathsf{-III})]$

ammonia partly in aerosol

almost all nitrate in aerosol

REGIME 1

REGIME 2

REGIME 3

Long-term trends in SO₂ emissions

United States SO2 Emissions vs 1970 level (= CAA Year 0)

New SO₂ pollution frontier: India

OMI satellite instrument shows rapid growth in SO₂ emissions from coal use

Lu et al. [2013]

Sulfate in US has shown linear response to SO₂ emissions

 $SO_{2} \xrightarrow{OH, H_{2}O_{2} \text{ (in cloud), ozone (in cloud)}} \text{ sulfate}$

 SO_2 emissions decreased by 3% per year from 1990 to 2010

➡ Sulfate decreased by 3% per year

observed (circles), model (background)

Leibensperger et al. [2012]

Problem with explaining winter sulfate haze in Beijing

- Sulfate production in models is limited by supply of photochemical oxidants
- Possible solutions: transition-metal-catalyzed oxidation by O₂, formation of SO₂-formaldehyde complexes; strongly dependent on aerosol/cloud pH

Wang et al. [2014]; Jonathan Moch, Harvard

Sulfate aerosol should now be titrated by ammonia in eastern US... but it isn't

Major departure from standard sulfate-ammonium aerosol thermodynamics

Silvern et al. [2017]

Long-term trends in Southeast US also depart from thermodynamics

Ammonium-sulfate aerosol ratio decreases as sulfate decreases!

Silvern et al. [2017]

Possible retardation of thermodynamic equilibrium by organic aerosol

US aerosol has changed over past decade from sulfate-rich to organic-rich

could affect uptake of other gases, including water

Primary and secondary organic aerosol

Two models for formation of secondary organic aerosol

Classical model for reversible uptake by pre-existing organic aerosol

Sources of organic aerosol in the Southeast US in summer

Observed (circles), GEOS-Chem (background) Aug-Sep 2013

Most organic aerosol in summer is biogenic; isoprene accounts for ~50%, most by low-NO_x channel

GEOS-Chem source attribution

Kim et al. [2015]

Aqueous-phase mechanism for secondary organic aerosol from isoprene: the short version

Aqueous aerosol

Marais et al. [2016]

Association of IEPOX secondary organic aerosol with sulfate

Marais et al. [2016]

Equatorial Asia: new frontier for air pollution

Massive agricultural fires in one of the most densely populated regions of Earth

2015 agricultural fires caused 100,000 excess deaths

Mean aerosol optical depths, Sept-Oct 20015

Koplitz et al. [2017]

Large planned increases of coal emissions in Equatorial Asia

GEOS-Chem simulations with vs. without 2030 coal emissions

Geostationary satellite constellation for air quality (2019-2020 launch)

- GEMS to be launched by Korean Aerospace Research Institute (KARI)
 - UV/Vis solar backscatter: aerosol, NO₂, SO₂, HCHO, O₃ (free troposphere)
 - 7x8 km² pixels, hourly data
- TEMPO will also detect O_3 in boundary layer (weak 500-600 nm Chappuis bands)

Excessive top-down PBL mixing in models also causes overestimate in surface ozone

Travis et al. [2017]

Global human perturbation of nitrogen cycle

Resulting N deposition (NH_4^+ , NO_3^-) modifies ecosystem function, C storage

Annual N deposition

Zhang et al. [2012]

Need better understanding of ammonia emissions

Global ammonia emissions 2005-2008 (kg N ha⁻¹ a⁻¹)

IASI 2007-2012 satellite observations of ammonia

Days per year exceeding 70 ppb ozone standard, 2010-2014

TOAR [2017]

Seasonal ozone (affecting vegetation) shows different picture

Maximum over western US ("Intermountain West") where ozone constantly hovers around 60 ppb

EPA [2014]

Formaldehyde as EPA Hazardous Air Pollutant (EPA): OMI-derived annual concentration in surface air, 2005-2014

1 ppb HCHO = 16 cancer risks per million people; 6,043 US cancer risks due to ambient HCHO

Zhu et al., 2017

Equatorial Asia: new frontier for air poll

 Equatorial Asia: 2015 agricultural fires caused 100,000 excess deaths Mean aerosol optical depths,

Sept-Oct 20015

Planned coal power plants (T. Nace, 2014)

Nigeria: dysfunctional populous country sitting on huge oil/coal reserves

Marais et al. [2014]; Koplitz et al. [2016]

90

80

DJF 825 hPa

100 110

ozone, ppb

Post-2000 decline in US emissions of NO_x (= NO + NO₂)

as seen by OMI satellite observations of NO₂

Sources: power plants

Nitrogen Dioxide (molecules/cm²)

0	2.5e+15	5.0e+15
Low	Moderate	High

UA EPA NO_x emissions are 2x too high

Trend in #days/year with ozone > 70 ppb, spring 2000-2014

TOAR [2017]

N deposition at US national parks: critical load exceedances

Coupling atmospheric chemistry to N biogeochemical cycle

• Grasshopper effect of nitrogen mediated by atmosphere, coupling to carbon

Biogenic organics contribute about half to all organic PM_{2.5} over US

EPA AQS Mean PM2.5 during SEAC4RS

Patrick Kim, Harvard

Recent eastern US data show large overestimate in EPA NO_x inventory

Fitting 2013 campaign data with GEOS-Chem requires halving of US NO_x emissions

- Model bias for ozone with original EPA emissions was +16 ppb
- Understanding isoprene chemistry, ozone background becoming more critical

Travis et al. [2016], A21C-044 (this morning!)

Composition of fine particulate matter (PM_{2.5})

Figure produced by Eloise Marais, Harvard

Ammonia emissions and air pollution

US ammonia emissions: 60% manure, 20% fertilizer

Leibensperger et al., 2012; Ellis et al., 2013; Paulot et al., 2014

Seasonal ozone (affecting vegetation) shows different picture

Spring (MAM) daytime average ozone, 2010-2014

Seasonal dose in excess of 60 ppb

Figure 4-5 National surface of observed 2006-2008 average W126 concentrations, in ppm-hrs

EPA [2014]; TOAR [2017]

$PM_{2.5}$ composition

Two components dominate $PM_{2.5}$ mass under almost all conditions:

- Sulfate-nitrate-ammonium (SNA)
- Organic carbon (OC)

To what extent is "biogenic" particulate matter controllable?

Can anthropogenic particles increase biogenic particle yield by providing a preexisting condensed phase for partitioning of semi-volatile products?

How to control ozone pollution?

Decrease emissions of nitrogen oxides (NO_x \equiv NO + NO₂) and/or volatile organic compounds (VOCs)

NO_x: efficient combustion (power plants, vehicles) VOCs: inefficient combustion (vehicles, fires), industry, vegetation

but complicated by non-linear dependence

Production can be VOC- or NO_x-limited:

Latest trends in China: decreasing NO_x but rising ozone

US is NO_x-limited due to high emissions of biogenic isoprene

OMI satellite observations of formaldehyde (HCHO) columns, May-Aug 2005-2014

2003-2013 summer trends of sulfate and organic aerosol

Observed organic aerosol decrease can be explained by isoprene SOA dependence on sulfate

Organic aerosol concentrations: observed (symbols) and model (background)

