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Some	of	the	most	common	errors	
made	by	scientists	and	engineers	analyzing	and	
modeling	atmospheric	and	environmental	data?

1. Forget/ignore	the	basic	hypotheses																														
underlying	statistical	inference	from	data.

2. Incorrectly	fit	a	”line”	(model)	to	data	(1):																										
neglect	the	symmetry	between	“predictors”	and	“response”	
when	assessing	uncertainties	the	analysis

3. Incorrectly	fit	a	”line”	(model)	to	data	(2):																																
fail	to	account	for	autocorrelation	of	data	or	predictors

4. Conflate	standard	deviation,	uncertainty,	and	confidence	
intervals	in	an	analysis

5. Not	remember	why	the	best	way	to	assess	uncertainties	is	
almost	always	the	bootstrap,	or	its	big	cousin,	 																							
the	Markov	Chain	Monte	Carlo	simulation



1.Statistical	inference
The	process	we	want	to	understand	can	be	represented	by	a	quantitative	model.	

Our	measurements	represent	samples of	the	results	of	this	process,	
modified	by	“errors”	(usually	with	zero	mean	=	“unbiased”)
which	can	be	represented	as	a	probability	distribution	

We	can	never	know	the	exact	values	of	the	parameters	of	this	model,	
or	the	exact	description	of	the	probability	distribution	function	for	the	“errors”.
Statistical	inference	provides	estimates of	the parameters and	the	pdf.	

A	common	approach	is	to	obtain	an	estimate	of	the	likelihood
of	a	set	of	model	parameters	and	pdf	given	a	set	of	measured	values,	
and	then	to	select	as	the	“best	estimate”	
the	parameters	and	pdf	that	give	the	maximum	likelihood.

1. The	framework	is	hypothetical:	there	exists	a	perfect	model	and	
a	perfect	probability	distribution.	

2. Our	best	model	is	an	estimate,	as	is	our	set	of	“uncertainties”.	
è It	is	possible	to	get	wrong/biased	estimates	if	my	model	of	the	
process,	or	of	the	errors,	is	not	correct	for	the	system	at	hand.



Find	resistance	for	the	filament	of	a	lightbulb,	as	a	function	of	T:
turn	a	knob	to	set	the	voltage,	observe	filament	T	with	a	spectrometer

2.	Model,	predictors,	response;	data—Symmetry?

But	the	data	are	reversible	(invertible)/symmetric:	given	observed	E	
and	resistance,	infer	voltage:	“Inverse	modeling”	ó “causality”
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A	working	example:	a	2-box	model	mass	transfer	model,	
and equivalent	Markov	chain

ar(x	=	N1)	Coefficients:	0.9761			Order	selected	1	(corr time	=	-1/log(.9761)=	41.3	(exact=50))
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Markov	chain	representation	of	this	model:

Box	1	->	Box	2			transition	probability	=	k/h
Box	2	->	Box	1			transition	probability	=	k/h

set	k/h	=	0.01			1%	transition	prob/time
proceed	step-wise,	stochastically	(runif)

h	dn1/dt =	k	(	n2	–n1)
h	dn2/dt =	k	(	n1	–n2)

(n1	– n2)	=	d	=	do exp(-2k/h	t)
n1	+	n2	=	constant	

massi =	h	Area	ni ;	set	k/h=.01



Our	working	example:	a	2-box	model	mass	transfer	model,	
and equivalent	Markov	chain
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Model	 pdf parameter

Box	1	->	Box	2			transition	probability	=	k/h
Box	2	->	Box	1			transition	probability	=	k/h

massi =	h	Area	ni

observations

Example:	turbulent	exchange	of	trace	gases

This	result	is	one	
realization	(or	sample)	of	
the	Markov	Chain



#	R	code	for	Markov	chain	representing	the	2-box	model
#	(for	reference)
k.h =	0.01	 #	transition	freq =	1/”lifetime”
n1	=	100;	n2	=	0	 #	number	of	particles	in	each	box,	initial
N1	=	rep(NA,	1000);	N2	=	rep(NA,	1000)	

#	number	of	particles	in	each	box,	in	time
N1[1]	=	n1;	N2[1]	=	n2
for(i	in	2:1000)	{

if(n1	==	0)	dn1	=	0	else	dn1	=	sum(runif(n1)	<	k.h)
if(n2	==	0)	dn2	=	0	else	dn2	=	sum(runif(n2)	<	k.h)
#	runif:	uniform	distribution	random	numbers	between	(0,1)
n1	=	n1-dn1+dn2	 #	new	value in	box	1
n2	=	n2-dn2+dn1	 #	in	box	2
N1[i]	=	n1
N2[i]	=	n2

}



Fitting	a	model	(e.g.	a	straight	line	ó a	model)	to	data:		

{	xi ,	yi }
{	Pred ,	Obs }

Model

y	=	ax	+	b	



θ =	parameters	(a,b)
P	=	probwe	get	obs data	x,	given	(a,b)

of	having	produced	the	observations	you	obtained.



to	maximize	P

minimize	sum	of	
squared	residuals

σ is	usually	attributed	to	“measurement	error”,	for	y;	no	errors	are	attributed	to	x
Both	usually	false!!



Ordinary	Least	Squares	(OLS):		“errors”	all	equal

Weighted	Least	squares	(Chi-square):	“Errors”	may	
be	different	for	different	observations	

𝛘2 :

OLS:

So	far	we	have	not	strayed	from	the	familiar!



But	there	is	(almost	always)	also	error	(unresolved	
variance)	in	the	predictor	(x)	(our	“symmetry”).

ρ =	cor(x,y)	≅

Look	at	the	relationship	between	the	
correlation	coefficient	ρ, and	the	OLS	Slope		(not	equal!!!):

Why	this	is	a	
YOOOGE	problem

OLS	Slope	=	ρ σy/σx
≅ r	SDy/SDx

symmetric

asymmetric



y	+	εy =	a	+	bx
x=	0:100	;	y=	1	+2*x	+ εy
εy =	rnorm(101,2)	
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Truth: a=2, b=1; OLS: a= 2.0 (0.06), b=0.94 (0.38)
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An	example	where	OLS	works	very	well
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Residuals

…	example where	OLS	works	very	well
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OLS	discovers	noise	distribution	
(“error	variance”)!

OLS	passes	test	for	
heteroscedacity

(no	trend	in	residuals)



“Type	II”	
regressions



“Type	II”	
regressions



Generalized	Chi-square	regression

Press	et	al.,	Numerical	Recipes



Generalized	Chi-square	regression:

y	=	a	+	bx

specified	errors	in	both	x	and	y,	for	each	
predictor-observation	pair.

Results	 in	a	non-linear	optimization	problem.	
Generalized	 to	multivariate	by	York.
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!!!!

OLS	is	biased	towards	underestimating	
the	slope	(…the	“yooge”	problem)
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Slopes	of	Type	I	&	II	regressions	for	the	model	problem,	
resampled	1000	times	(resampling	errors)

MA	is	best,	because	the	relationship	between	σx and	σy is	closest	to	
MA	assumptions

Regression	slope	Y1	on	X1	– errors	in	both	Y	and	X.



Don’t	fit	OLS	models	to	data	with	errors	in	both	
predictors	and	response;	

test	model	fit	for	heteroscedacity e.g.	ncvTest!



3.	Analyzing	and	Modeling	
Autocorrelated Data



• What	is	autocorrelation	in	a	data	set,	and	
why	is	this	characteristic	so	important	in	
analyzing	and	modeling	the	data	?

• Brief	introduction	to	time	series	analysis:	
autoregressive,	moving	average	filtering	of	
noise	as	a	key	element	in	time	series.

• Variance	inflation	due	to	autocorrelation	of	
data—”red	shifted	noise”.

• Using	ARIMA	models	to	extract	underlying	
trends	and	signals	from	autocorrelated data.



3.	First-order	autoregressive	(Markov)	processes
Box, G. E. P., Jenkins, G. M., & Reinsel, G. C., “Time Series Analysis: Forecasting and Control” (Pearson, 1994).

Autoregressive	Process (value	at	time	t	depends	on	
previous	value	plus	a	random	forcing):
Definition:	zt =	ϕ1 zt-1 +	at
z:	observed	data;	t	time	(discrete,	evenly	spaced);	
a random	“shocks”;	ϕ1 autoregressive	parameter	
(above	is	ar(1)	process;	note	zero	mean…)

Correlation	function for	lag	k:		ρk =	φ1 ρk-1 è ρk =	φ1
k				

(decays	exponentially,	osc if	φ <0)

If	E[at2]	=	σa2 ,	E[zt2]	=	σz2 =	σa2/(1	– ρ1φ1)	=	1/(1	– φ1
2)		:	

Variance increased	by	1/(1	– φ1
2)	compared	to	forcing	!!!



è

a	=	rnorm(1000)

φ=	0.905				(τdecay=10)

Random	impulses	with	autocorrelation	è variance	inflation

YY[i]=a[i]+	ϕ*YY[i-1]

Autoregressive	Ar(1)	<first	order…>

1/(1	- φ2)	=	5.5;	var=4.97
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rnorm(1000);	var=	1



ACF	function



x33=sin((1:200)*2*pi/63.4-.94)
#ls.print(lsfit(x3,x[1:200]))
#Residual	 Standard	 Error=1.841	 ;	R-Square=0.2158
#F-statistic	 (df=1,	 198)=54.4871;	 p-value=0
#																		Estimate	 Std.Err t-value	 Pr(>|t|)
#Intercept	 		0.3883	 	0.1302	 	2.9821	 		0.0032
#X										 -1.3795	 	0.1869	 -7.3815	 		0.0000
arima(x	 =	Z[1:200],	order	=	c(1,	0,	0),	xreg =	x3)
#Coefficients:

#ar1	 	intercept							x3
#0.8547	 0.3848	 	-1.2766

#s.e. 0.0360	 				0.4473	 		0.5489

##	do	it	again	with	 5x	longer	 data	record
#arima(x	 =	Z,	order	=	c(1,	0,	0),	xreg =	x33)
#
#Coefficients:

#ar1		intercept						x33
#		0.9021	 0.1835	 	-0.4675

#s.e. 0.0135	 				0.3203	 		0.3280
sigma^2	 estimated	 as	1.003:		

With	200	points,	the	OLS	finds	a	decent	fit	and	excellent	p	
and	F	values.	But,	even	with	only	200	points,	the	arima
model	shows	that	we	cannot	reject	the	null	hypothesis:	
“the	time	series	is	serially	correlated	noise,	with	no	
detectable	signal”.	The	longer	time	series	makes	a	strong	
case	supporting	the	null	hypothesis	and	it	obtains	good	
values	for	the	ar()	process.

F-statistic

The	hazards	of	ar1()	data:
• There	are	actually	fewer	degrees	of	

freedom	than	you	think.		
• The	variance	is	inflated.
• The	“redshifted	noise”	is	actually	

random	(in	phase),	but	shows	distinct	
structure	associated	with	the	
decorrelation	time.	A	very	long	time	
series	needed	to	know	if	it	is	a	signal

• Test	data	with	ar()	and	arima()—
efficiently	estmate autoregressive	
coefficient	and	its	significance.

An	autoregressive	
random	time	series,	
like	our	boxes



The	arima(1,0,0)	model	determines	signal	with	autocorrelated noise:
it	fits	a	basic	model	to	both!		ar()	+	OLS	….

Forecasting:		predict.Arima()

“Best”	model:	ar1=0.903,	Ampl =	0.78	(s.e.0.4),	sigma^2	(est.	noise)	=	1.001
Period=460,	phase	shift	=-30. ar1						int sin.t cos.t

ar1			1.00000	 	0.00609	 	0.00952	 	0.00044
int 0.00609	 		1.00000	 -0.06123	 -0.10207
sin.t 0.00952	 -0.06123	 	1.00000	 -0.05594
cos.t 0.00044	 -0.10207	 -0.05594	 	1.00000

Parameter	
correlation		
matrix



Don’t	fit	OLS	models	to	garbage:	
test	your	data	for	serial	correlation	!



4.	Estimating	and	presenting	probability	
distributions	and	uncertainty	(a.k.a.	“errors”)

• Rigorously	estimated	errors	are	essential	for	data	analysis

• The	standard	deviation (σ)
measures	variation	of	the	sample.	

• The	confidence	interval	(CI)
estimates	the	uncertainty	of	the	model	parameters.

• The	confidence	interval	is	often	estimated	
using	the	“standard	error”	(from	MLE)	or	the	“t-test”.	
These	assume	errors	are	Gaussian.

• Complex	inference	(e.g.	hierarcharal	or	
sequential/chained	models)	require	a	bootstrap,	or	its	big	
cousin,	the	Markov	Chain/Monte	Carlo		approach.



The	confidence	interval	is	an	estimate for	the	results	that	would	
be	obtained	from	resampling (repeating	an	experiment).	

If	we	could	resample	an	experiment	many	times,	
the	x%	(e.g.	95%)	confidence	interval	encompasses	x%	(95%)	
of	the	trial	results.	

Example	1:	I	want	to	estimate	the	mean	temperature	over	a	
geographic	area	at	a	particular	time.	I	measure	the	temperature	at	
N	points	across	the	domain,	and	take	the	average	to	obtain	an	
estimate	of	the	mean.	

If	I	repeated	this	measurement	many	times,	the	95%	confidence	
interval	is	given	the	the	2.5	and	97.5	percentiles.	I	can	only	make	an	
estimate	of	the	true	mean.	Even	worse,	I	can’t	resample	the	domain	
at	a	past	time!		I	have	only	the	N	data	points	I	first	measured.

What	is	a	“confidence	interval”		(“CI”)	?



Standard	deviation	(σ) or	variance	(var)
vs

confidence	interval	(estimated	error	or	uncertainty)

Standard	deviation	measures	the	width	of	the	probability	distribution	
of	your	sample:	estimates	of	σ will	be	refined	as	the	sample	gets	
larger.	Estimates	of	the	CI get	smaller	as	the	sample	gets	larger.
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Histogram of rnorm(50)
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Histogram	of	50	samples	drawn	from	the	normal	

distribution,	compared	to	the	(“true”)	normal	distribution



ZZ	=	rep(NA,	1000)
for(k in	1:1000)	{

ZZ[k]	=	mean(	rnorm(100)	)
}
quantile(ZZ,probs=c(.025,.975))						

2.5%	,	97.5%		è -0.20,		0.20,	CI	range=	0.4

Example:
Estimate	the	mean	of	
normally	distributed	
data,	N	=	100	points,	
resampling	the	“true”
Gaussian	(Normal)	pdf.

“True”:	mean	=0
σ =	1	(std dev)

Resample	1000	times:

Histogram of resampled rnorm(100)
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The	bootstrap	method resamples the	original	data	set,	
i.e.	if	I	can’t	repeat	the	measurements.	We	use	its	N data	
points	to	generate	a	large	number	of	synthetic	data	sets,	
each	also	with	N data	points.

The	procedure	is	simply	to	draw	N data	points	at	a	time	
with	replacement from	each	synthetic	data set. Because	
of	the	replacement,	we	do	not	simply	get	back	our	original	
data	set	each	time.	We	get	sets	in	which	a	random	fraction	
of	the	original	points,	on	average 1/e	≈	37%	,	are	replaced	
by	duplicated original	points.	

Subject	the	original	data	and	the	synthetic	data	sets	to	
the	same	estimation	procedure	(mean;	MLE/Chi-square	
model	inversion,	…) to	obtain	parameter	estimates.

Estimating	errors	using	non-parametric	resampling



Zum =	rnorm(100)
RR	=	rep(NA,	1000)
for(k in	1:1000)	{

RR[k]	=	mean(sample(Zum,	100,	replace =	T)	)	
}	
quantile(RR,	probs =	c(.025,	.975))							
2.5%	,		97.5%	è -0.38		0.020			range 0.40
same range	as	sampling	rnorm itself!

Example:
Estimate	the	mean	of	
normally	distributed	
data,	N	=	100	points,	
using	a	bootstrap.

“True”:	mean	=0
σ =	1	(std dev)

Resample	100	data	1000	times:
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The	set	of	estimated	parameters	will	be	
distributed	around	the	best	estimate	of	the	
parameters	from	the	original	data	(a(0)) in	close	
approximation	to	the	way	that	a(0) is	distributed	
around	atrue as	in	our	simple	example.



Markov	chain	– Monte	Carlo	concept	to	obtain	the	CI	

A.	Resample	the	underlying	model:	
we	can	re-do	the	experiment



B.	Resample	the	original	data	:	we	
cannot re-do	the	experiment



Some	critical	things	to	take	away	from	this	
lecture

1. The	basic	hypotheses underlying	statistical	inference	from	
data:	the	hypothetical	“true”	model	or	parameter	value,	and	
the	equally	hypothetical	pure	pdf	that	controls	my	sampling.

2. There	is	an	underlying	symmetry	between	“predictors”	and	
“response”:	functional	relationships,	errors

3. Autocorrelation	of	(among)	data	and	predictors	is	endemic	in	
our	fields	and	has	a	very	strong	influence	on	results

4. Use	central	values,	standard	deviation,	uncertainty	(standard	
errors),	and	confidence	intervals	correctly	and	be	explicit

5. The	bootstrap	or	its	big	cousin,	the	Markov	Chain	Monte	Carlo	
simulation,	are	incredibly	useful	tools	for	exploring	the	
uncertainty	structure	of	your	problem.	They	focus	on	repeated	
simulation	and	resampling	of	your	data,	or	your	complete	
data-model	framework.



Finis



First-order	autoregressive	(Markov)	processes
Box, G. E. P., Jenkins, G. M., & Reinsel, G. C., “Time Series Analysis: Forecasting and Control” (Pearson, 1994).

Autoregressive	Process (value	at	time	t	depends	on	previous	value	plus	a	random	forcing):
Definition:	zt =	ϕ1 zt-1 +	at
z:	observed	data;	t	time	(discrete,	evenly	spaced);	a random	“shocks”;	ϕ1 autoregressive	
weight	parameter	(above	is	ar(1)	process;	note	zero	mean…)

Moving	Average	Process (value	at	t	depends	a	random	forcing	plus	mean	of	previous):
Definition:	zt =	-θ1 at-1 +	at

Both	are	special	cases	of	stochastic	processes	with	a	linear	filter:

Definition:	zt =	at +	Σ at-j ψj

z:	observed	data;	t	time	(discrete,	evenly	spaced);	a	random	“shocks”;	ϕ1 autoregressive	
weight	parameter

j=1

∞

Correlation	function for	lag	k:		ρk =	φ1 ρk-1 è ρk =	φ1
k	 			(decays	exponentially,	osc if	φ <0)

If	E(at2]	=	σa2 ,	E(zt2]	=	σz2 =	σa2/(1	– ρ1φ1)	=	1/(1	– φ1
2)		:	 Variance increased	by	1/(1	– φ1

2)




