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Some of the most common errors

made by scientists and engineers analyzing and
modeling atmospheric and environmental data?

® 1
© 2.

O 3.

© 5.

Forget/ignore the basic hypotheses

underlying statistical inference from data.

Incorrectly fit a "line” (model) to data (1):

neglect the symmetry between “predictors” and “response’
when assessing uncertainties the analysis

Incorrectly fit a "line” (model) to data (2):

fail to account for autocorrelation of data or predictors

)

. Conflate standard deviation, uncertainty, and confidence

intervals in an analysis

Not remember why the best way to assess uncertainties is
almost always the bootstrap, or its big cousin,

the Markov Chain Monte Carlo simulation



1.Statistical inference

The process we want to understand can be represented by a quantitative model.

Our measurements represent samples of the results of this process,
modified by “errors” (usually with zero mean = “unbiased”)
which can be represented as a probability distribution

We can never know the exact values of the parameters of this model,

or the exactdescription of the probability distribution function for the “errors”.
Statistical inference provides estimates of the parameters and the pdf.

A common approach is to obtain an estimate of the likelihood

of a set of model parameters and pdf given a set of measured values,
and then to select as the “best estimate”

the parameters and pdf that give the maximum likelihood.

1. The framework is hypothetical: there exists a perfect model and
a perfect probability distribution.
2. Our best model is an estimate, as is our set of “uncertainties”.

= Itis possible to get wrong/biased estimates if my model of the
process, or of the errors, is not correct for the system at hand.




2. Model, predictors, response; data—Symmetry?

Find resistance for the filament of a lightbulb, as a function of T:
turn a knob to set the voltage, observe filament T with a spectrometer

SetV measure spectrum—> T
0 (absolute measurement! )
>
(=
>
20 Predictor Observation Model Param
5+0v 1000+xeK 100+¢ Q
E = VZ/R — GO'T4 7/ 1155 110
R = V?/(aoT?) ao=2.5x10"3+ ¢”

response  predictors
0=5.670367 x 108 kg s3 K4

But the data are reversible (invertible)/symmetric: given observed E
and resistance, infer voltage: “Inverse modeling” < “causality”



A working example: a 2-box model mass transfer model,
and equivalent Markov chain

Markov chain representation of this model.:

h Box 1-> Box 2 transition probability = k/h
(m) Box 2 -> Box 1 transition probability = k/h
set k/h =0.01 1% transition prob/time
k(ms?) k(ms?) proceed step-wise, stochastically (runif)
h
(m)

mass; = h Arean,; set k/h=.01
hdnl/dt=k(n2-n1)
hdn2/dt=k(n1-n2) o

(n1—n2)=d=d,exp(-2k/ht) "
nl+ n2 = constant
ar(x = N1) Coefficients: 0.9761 Order selected 1 (corrtime = -1/log(.9761)=41.3 (exact=50))



Our working example: a 2-box model mass transfer model,
and equivalent Markov chain

Model pdf parameter

Box 1-> Box 2 transition probability = k/h
Box 2 -> Box 1 transition probability = k/h

observations

100

ci

mass; = h Arean, g

realization (or sample) of
tlhe Mquov IChainl |

200 400 600 800 1000

! This result is one

Example: turbulent exchange of trace gases

tt



# R code for Markov chain representing the 2-box model

# (for reference)
k.h =0.01 # transition freq = 1/”lifetime”
nl1=100;n2=0 # number of particles in each box, initial
N1 =rep(NA, 1000); N2 = rep(NA, 1000)
# number of particles in each box, in time
N1[1]=n1; N2[1]=n2
for(iin 2:1000) {
if(n1==0) dnl =0 else/dnl = sum(runif(nl) < k.h)
if(n2==0) dn2 =0 else/dn2 = sum(runif(n2) < k.h)
# runif: uniform distribution random numbers between (0,1)

nl=nl-dnl+dn2 # new value in box 1
n2 = n2-dn2+dnl #in box 2

N1[i]=nl

N2[i] = n2



Fitting a model (e.g. a straight line <& a model) to data:

Given a pair of covariates with a linear relationship,
we uncover and test that relationship
with a linear regression.

In R:
Im(y ~ X)

{ Pred , Obs }

{Xiryi}

Model

......

y=ax +b

What are we really doing here?



Ordinary least squares
as a maximum likelihood estimator

Likelihood Is a term used for the probability of a set of
parameters, given some data.

L(@'X) = P(Xle) O = parameters (a,b)

P = prob we get obs data x, given (a,b)

You can estimate parameters, given some data,

by finding the parameters with the greatest likelihood
of having produced the observations you obtained.
The likelihood provides you with a cost function

or figure of merit to optimize.



Ordinary least squares
as a maximum likellhood estimator

Assume that the errors In predicting the observations y
using the covariates x and our model

are normally distributed with the same variance o.
o is usually attributed to “measurement error”, for y; no errors are attributed to x

.- ) Both usually false!!
Then the probabillity of the data is:

N T 1 Ui — y(ajz> 2\ <+— to maximize P
P X H CXPp _5 o minimize sum of
=1 L _

squared residuals

N (g — y(a))?
Py o 35 I S

And that's what motivated least squares



Ordinary Least Squares (OLS): “errors” all equal

Weighted Least squares (Chi-square): “Errors” may
be different for different observations

N
o Yi — U
ots: 3 R o5 - ot
i=1
N 9
2 . (Q/z — U(/lz»d
X - —log(P)ocZ; 2%2)

So far we have not strayed from the familiar!



But there is (almost always) also error (unresolved
variance) in the predictor (x) (our “symmetry”).

Look at the relationship between the
correlation coefficient p, and the OLS Slope (not equal!!!):

> (@i —T) (v —7)

p=cor(xy)= r=

\/z(a:i - ?f)z\[z:(y,; ~7)?
symmetric ¢ | ¢

OLS Slope =p o,/0, Why thisis a
=r SD,/SD, YOOOGE problem

asymmetric



An example where OLS works very well

y+ Sy =a + bx Truth: a=2, b=1; OLS: a= 2.0 (0.06), b=0.94 (0.38)

x=0:100; y=1+2%x + ¢,
¢, =rnorm(101,2)




... example where OLS works very well

Normal Q-Q Plot Residuals
QQNORM plot of residuals gives Eps-y
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Theoretical Quantiles

OLS discovers noise distribution
(“error variance”)!

OLS passes test for
heteroscedacity
(no trend in residuals)




| | | llType II”
Major Axis Regression regressions

Minimize the orthogonal distance from the points to the line
- “orthogonal least squares”

R Avallable in the R package “Imodel2”

There I1s a symmetry
between the x and y.
Same units, same error.

There 1s no difference between
> response and predictor.



| _ “Type II”
Ranged Major Axis (RMA) and regressions

Standard Major Axis (SMA)

Minimize the area under the triangle

Available in the R package “Imodel2”
Observed value
Neither x nor vy
should be considered a

response or predictor.
Triangular area

minimized in RMA
. SMA recasts the data
INnto a bivariate normal distribution.




Generalized Chi-square regression

If experimental data are subject to measurement error not only in the y;’s, but also in
the z;’s, then the task of fitting a straight-line model

y(z) =a+ bz (15.3.1)

is considerably harder. It is stra.ightforward to write down the x? merit function for this case,

o (y: — a — bas)?
2 z — U z
X (a,b) = > g (15.3.2)
i=1 Y T

where o, ; and oy ; are, respectively, the z and y standard deviations for the sth point. The
weighted sum of variances in the denominator of equation (15.3.2) can be understood both
as the variance in the direction of the smallest x* between each data point-and the line with
slope b, and also as the variance of the linear combination y; — a — bz; of two random
variables x; and y;,

Var(y; — a — bz;) = Var(y:) + b*Var(z;) = o5 ; + b°0z; = 1/w; (15.3.3)

The sum of the square of /N random variables, each normalized by its variance, is thus
x*-distributed.

We want to minimize equation (15.3.2) with respect to a and b. Unfortunately, the
occurrence of b in the denominator of -equation (15.3.2) makes the resulting equation for
the slope 0x*/8b = 0 nonlinear. However, the corresponding condition for the intercept,

Press et al., Numerical Recipes



Generalized Chi-square regression:
y =a + bx

specified errors in both x and vy, for each
predictor-observation pair.

N

Plap) =y e be

2 2 2
O'yi-l-b o pulp

=1

Results in a non-linear optimization problem.
Generalized to multivariate by York.



There are a variety of linear regressions
that depend on your assumptions.

Method [ Conditions In R
OLS Error on y i1s much greater than error on the x. Im(y~x)
Errors on y are id.
WLS Error on y is much greater than error on the x. Im(y~x, Weights = . )
Error on y have different weights.
MA Data is reasonably bivariate normal. Imodel2
x and y have same units and/or
Error variances are close to the same.
RMA / Data is reasonably bivariate normal. Imodel2
Error variance is roughly proportional to
SMA variance along axis.
York You can estimate the error on x and y, Yorkfit (web download)

Ideally on individual x; and v;.




yl+g,=a+bx ;xl=x+g,

OLS
MA
— SMA

20

15

5

0 5 10

OLS is biased towards underestimating x1 Imodel2( y1~ x1 )
the slope (...the “vooge” problem)



Slopes of Type | & Il regressions for the model problem,

resampled 1000 times (resampling errors)

MA is best, because the relationship between o, and o, is closest to
MA assumptions

E OLS
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Regression slope Y1 on X1 —errors in both Y and X.



O

Don’t f|t OLS models to data with errors in both
predictors and response;

test model fit for heteroscedacity e. g ncvTest!
N




3. Analyzing and Modeling
Autocorrelated Data



What is autocorrelation in a data set, and
why is this characteristic so important in
analyzing and modeling the data ?

Brief introduction to time series analysis:
autoregressive, moving average filtering of
noise as a key element in time series.

Variance inflation due to autocorrelation of
data—"red shifted noise”.

Using ARIMA models to extract underlying
trends and signals from autocorrelated data.



3. First-order autoregressive (Markov) processes

Box, G. E. P, Jenkins, G. M., & Reinsel, G. C., “Time Series Analysis: Forecasting and Control” (Pearson, 1994).

Autoregressive Process (value at time t depends on
previous value plus a random forcing):

Definition: z, = ¢, z, , + a,

z: observed data; t time (discrete, evenly spaced);
a random “shocks”; ¢, autoregressive parameter
(above is ar(1) process; note zero mean...)

Correlation function for lagk: p, =, p.;y =2 P, = P~
(decays exponentially, osc if ¢ <0)

If E[a,’] = 0,2, E[z’] =0,2=0,%/(1 —p.d;) =1/(1—-D,?) :
Variance increased by 1/(1 — ¢,?) compared to forcing !!!




Random impulses with autocorrelation = variance inflation

$=0.905 (T4, =10)

/ YY[il=a[il+ @*YY[i-1] \  1/(1- ¢?) =5.5; var=4.97

°1
rnorm(1000); var=1 o | |
- | i ‘
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'ﬂ
o - + O A A *{
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c(0, tt)

Autoregressive Ar(1) <first order...>



ACF function

ACF

<
-

0.8

06

0.4

Series x

acf(x or xm)

= AR(p=1)
— MA(g=5)




Z[1:200]

Phase (radians)

Fit model to serially correlated noise: r*2=.21, p <1e-4

g o
U

\ An autoregressive
random time series,

| Iikel our boxes

0 50 100 150 200

F-statistic 1:200

]
30 40 50 60 70

x33=sin((1:200)*2*pi/63.4-.94)
#ls.print(Isfit(x3,x[1:200]))

#Residual Standard Error=1.841 ; R-Square=0.2158
#F-statistic (df=1, 198)=54.4871; p-value=0

# Estimate Std.Err t-value Pr(>|t])
#Intercept 0.3883 0.1302 2.9821 0.0032
H#X -1.3795 0.1869 -7.3815 0.0000

The hazards of arl() data:
There are actually fewer degrees of
freedom than you think.

The variance is inflated.

The “redshifted noise” is actually
random (in phase), but shows distinct
structure associated with the
decorrelation time. A very long time
series needed to know if it is a signal
Test data with ar() and arima()—
efficiently estmate autoregressive
coefficient and its significance.




The arima(1,0,0) model determines signal with autocorrelated noise:
it fits a basic model to both! ar() + OLS ....

RMS

1.0032 1.0034 1.0036 1.0038

1.0030

Raster on Period [400, 600]

1/(1-6%) =5.5 ; Signal = sin(2xtt/500)
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T I T T T --- Ampl 0.78 Fit Amp, Phase, Period 4&0-600
400 450 500 550 600 T T I T T T
Period 0 200 400 600 800 1000

tt
“Best” model: ar1=0.903, Ampl=0.78 (s.e.0.4), sigma”2 (est. noise) =1.001

Period=460, phase shift =-30.

Forecasting: predict.Arima()

arl int sin.t cos.t
arl 1.00000 0.00609 0.00952 0.00044 Parameter
int 0.00609 1.00000 -0.06123 -0.10207 correlation
sin.t 0.00952 -0.06123 1.00000 -0.05594 matrix

cos.t 0.00044 -0.10207 -0.05594 1.00000




Don’t fit OLS:models.to garbage:
test your data for serial correlation !




4. Estimating and presenting probability
distributions and uncertainty (a.k.a. “errors”)

Rigorously estimated errors are essential for data analysis

The standard deviation (o)
measures variation of the sample.

The confidence interval (Cl)
estimates the uncertainty of the model parameters.

The confidence interval is often estimated
using the “standard error” (from MLE) or the “t-test”.
These assume errors are Gaussian.

Complex inference (e.g. hierarcharal or
sequential/chained models) require a bootstrap, or its big
cousin, the Markov Chain/Monte Carlo approach.



What is a “confidence interval” (“Cl”)?

The confidence interval is an estimate for the results that would
be obtained from resampling (repeating an experiment).

If we could resample an experiment many times,
the x% (e.g. 95%) confidence interval encompasses x% (95%)
of the trial results.

Example 1: | want to estimate the mean temperature over a
geographic area at a particular time. | measure the temperature at
N points across the domain, and take the average to obtain an
estimate of the mean.

If | repeated this measurement many times, the 95% confidence
interval is given the the 2.5 and 97.5 percentiles. | can only make an
estimate of the true mean. Even worse, | can’t resample the domain
at a past time! | have only the N data points | first measured.




Standard deviation (o) or variance (var)
3

confidence interval (estimated error or uncertainty)

Standard deviation measures the width of the probability distribution

of your sample: estimates of o will be refined as the sample gets

larger. Estimates of the Cl get smaller as the sample gets larger.
Density: rnorm(1e6)

Density: rnorm(50)
. A\ mean=-.12 . -~ /\ | mean=.001
. C1=(-13,.34) - C1=(-..0006,
.003)

0.3

| range 0.5

Density
0.2 0.3
Density
0.1 0.2

0.1

0.0

0.0
|

2 4 6
N = 100000000 Bandwidth = 0.02261

N =50 Bandwidth =0.3717



Histogram of 50 samples drawn from the normal
distribution, compared to the (“true”) normal distribution

o
—

Frequency

rnorm(50)



Histogram of resampled true pdf
mean(rnoyrm(100) )

Example:

Estimate the mean of
normally distributed
data, N = 100 points,
resampling the “true”
Gaussian (Normal) pdf.

150 200
l |

Frequency
100
|

“True”: mean =0
o =1 (std dev)

Resample 1000 times:

ZZ = rep(NA, 1000) | I I
for(k in 1:1000) { -3 -0.2 -01 0 0.1 0.2 0.3

ZZ[k] = mean( rnorm(100)) Sample Mean

}
quantile(ZZ,probs=c(.025,.975))

2.5%,97.5% = -0.20, 0.20, Cl range= 0.4



Estimating errors using non-parametric resampling

The bootstrap method resamples the original data set,
i.e. if | can’t repeat the measurements. We use its N data
points to generate a large number of synthetic data sets,
each also with N data points.

The procedure is simply to draw N data points at a time
with replacement from each syntheticdata set. Because
of the replacement, we do not simply get back our original
data set each time. We get sets in which a random fraction
of the original points, on average 1/e = 37%, are replaced
by duplicated original points.

Subject the original data and the synthetic data sets to
the same estimation procedure (mean; MLE/Chi-square
model inversion, ...) to obtain parameter estimates.



Example: Histogram of resampled 100 data points

Estimate the mean of -

mean of — ! ~ mean of

200
I

normally distributed original i true pdf
data, N = 100 points, sample i
using a bootstrap. B - |
“True”: mean =0 c o :
= R :
o =1 (std dev) g i
o _ |
Resample 100 data 1000 times: © i
Zum = rnorm(100) S p— I —
RR =rep(NA, 1000) | ! |
for(k in 1:1000){ 0.4 -0.2 0 0.2
} RR[k] = mean(sample(Zum, 100, replace =T)) Sample Mean

quantile(RR, probs = ¢(.025, .975))
2.5%, 97.5% =» -0.38 0.020 range 0.40
same range as sampling rnorm itself!



The set of estimated parameters will be
distributed around the best estimate of the
parameters from the original data (a(0)) in close
approximation to the way that a(0) is distributed
around a,,,. as in our simple example.



Markov chain — Monte Carlo concept to obtain the CI

15.6 Confidence Limits on Estimated Model Parameters

685

true parameters
Atrue

A. Resample the underlying model:
we can re-do the experiment

actual data set

hypothetical
data set

fitted

parameters
L1

hypothetical
data set

ai

hypothetical
data set

a3

NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)

Figure 15.6.1. A statistical universe of data sets from an underlying model. True parameters atrye are
realized in a data set, from which fitted (observed) parameters ag are obtained. If the experiment were
repeated many times, new data sets and new values of the fitted parameters would be obtained.



686 Chapter 15. Modeling of Data

theti 2 Monte Carlo
synthetic | 4 | parameters
dataset 1 |phin P ©)
a;

synthetic a(s)
data set 2 i 2

actual x2 | fitted

dataset [—>| parameters

min a
0
synthetic (s)
—
data set 3 #3
synthetic ag)
B. Resample the original data : we data set 4

cannot re-do the experiment

Figure 15.6.2. Monte Carlo simulation of an experiment. The fitted parameters from an actual experiment
are used as surrogates for the true parameters. Computer-generated random numbers are used to simulate
many synthetic data sets. Each of these i1s analyzed to obtain its fitted parameters. The distribution of
these fitted parameters around the (known) surrogate true parameters is thus studied.



Some critical things to take away from this
lecture

. The basic hypotheses underlying statistical inference from
data: the hypothetical “true” model or parameter value, and
the equally hypothetical pure pdf that controls my sampling.

. There is an underlying symmetry between “predictors” and
“response”: functional relationships, errors

. Autocorrelation of (among) data and predictors is endemic in
our fields and has a very strong influence on results

. Use central values, standard deviation, uncertainty (standard
errors), and confidence intervals correctly and be explicit

. The bootstrap or its big cousin, the Markov Chain Monte Carlo
simulation, are incredibly useful tools for exploring the
uncertainty structure of your problem. They focus on repeated
simulation and resampling of your data, or your complete
data-model framework.




Finis



First-order autoregressive (Markov) processes
Box, G. E. P, Jenkins, G. M., & Reinsel, G. C., “Time Series Analysis: Forecasting and Control” (Pearson, 1994).

Autoregressive Process (value at time t depends on previousvalue plus a random forcing):

Definition: z, = ¢, z,., + a,

z: observed data; t time (discrete, evenly spaced); a random “shocks”; ¢, autoregressive
weight parameter (aboveis ar(1) process; note zero mean...)

Moving Average Process (value at t depends a random forcing plus mean of previous):

Definition: z,=-0, a,; +a,

Both are special cases of stochastic processes with a linear filter:

Definition: z,=a, + Elat_j U,

z: observed data; t time (discrete, evenly spaced); a random “shocks”; ¢, autoregressive
weight parameter

Correlation functionforlagk: p, = ¢, p,.; = p.=d,* (decaysexponentially, osc if ¢ <0)

If E(a,’] = 0,2, E(z] =0,2=0,%/(1-p,d,) =1/(1 —d,?) : Varianceincreased by 1/(1— ¢;?)
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Figure 3.1 Realizations from first-order autoregressive processes and their cor-
responding theoretical autocorrelation functions and spectral density functions.



