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Large-scale	(planetary	
and	synoptic)	flows

Moist	convection

Dynamics	of	moist	atmospheres

The	strong	coupling	between	convection	and	large-scale	
circulations	is	central	to	the	dynamics	of	moist	atmospheres

Heating

Large-scale	
environment



Clouds Meteosat-7
Visible	image

From	Brian	Mapes



~700km



~50km



sin(lat)

Aquaplanet simulations	that	differ	only	in	their	
representations	of	convection

Simulated	zonal	mean	
precipitation	using	two	
versions	of	a	convection	
scheme
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Courtesy	of	Bjorn	Stevens, Following	Hess	et	al.,	J.	Atmos.	Sci.,	1993



Tropical	transients



Space-time	spectra	(averaged	over	15N-15S,	20	years)	
(with	background	red	noise	removed)

After Wheeler and Kiladis, J. Atmos. Sci., 1999

Symmetric	about	the	equatorAnti-symmetric	about	the	equator

Overlaid	are	dispersion	curves	of	linear	equatorial	shallow	water	
modes	of	Matsuno	1966
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From	Mapes,	2009
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Examples from 
the 2011-2012 
DYNAMO field 
campaign
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Chidong	Zhang



Dec.	29,	
2011
METEOSAT7
Ch10
Water	vapor



Why	study	convectively	coupled	tropical	transients?
• Practical:

– Tropical	forecast,	including	monsoon,	tropical	
cyclones	etc.	(e.g.	Yasunari,	1979;	Maloney	and	Hartmann,	2000)

– ENSO	(e.g.	McPhaden,	1999)

– Global	medium	range	weather	forecast	(e.g.	Ferranti	et	
al.,	1990)

• Theoretical:
– Important	examples	of	large-scale	convective	
organization

– A	good	starting	point:	quite	well	observed	and	
convectively	coupled	waves	appear	linear



Observations

Lin	et	al.,	J.	Climate,	2006,	with	IPCC	AR4	models
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Observations

Lin	et	al.,	J.	Climate,	2006
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Cloud-resolving	models

Credit:	P.	Siebesma,	Delft	U.	Technology,	Netherlands,	computation	done	on	a	GPU



Simplify	the	problem	
(both	conceptually	and	computationally)

• Interaction	between	convection	and	two-
dimensional	(2D)	linear	gravity	waves	(also	
with	no	radiative or	wind-induced	surface	flux	feedbacks)

• Take	advantage	of	the	linearity!	Treat	one	
horizontal	wavenumber	at	a	time

• Use	a	cloud-resolving	model	to	represent	a	
vertical	line	in	the	wave

x=x0

CSRM



Development	of	convectively	coupled	waves

Without	coupling	to	gravity	waves,	the	std	of	precip	is	0.6mm/day

Cloud	resolving	model	domain	mean	precipitation



Observation
(Kiladis	et	al.,	2009,	Rev.	Geophys.)

Period:	6	days

Period:	2	days

Period:	3	days

Period:	2	days
Moisture	anomaly	(0.1g/kg)

Period:	6	days

Period:	3	days

Simulation	(Kuang,	2008)



Looking	for	more	clarity

Parameterized	
large-scale	wave	

dynamics

Moist	convection
simulated	explicitly with	
a	cloud	resolving	model

Coupling with large-scale flow only cares about the 
macroscopic function (like the gas law), instead of 
the detailed form (like a description of all the 
molecules). 
For convective coupled tropical waves, the 
macroscopic function of moist convection are 
captured by its linear response functions.



Consider	a	generic	system

d

x
dt
=S


x( )+


f

 

x is	the	state	vector	that	contains	the	

variables	that	describe	the	system.
describes	 its	evolution.

In	the	current	example,	 										is	what	is	
solved	in	the	cloud-resolving	model.

S

x( )

S

x( )



Now	assume there	is	a	reduced	set	of	
mean	field	variables	 					that	full	describe	

the	system	in	a	statistical	sense

  

d

X
dt

=R

X( )+


F

 

X

 

x


Xi.e.	statistics	of are	in	equilibrium	with

In	the	current	example,	 											describes	a	
convective	parameterization.  

R

X( )



Further	assume that														can	be	usefully	
linearized	 around	a	reference	state								so	that

  

d

′X

dt
=M


′X +

′F

MWe	will	refer	to as	the	linear	response	function.

Note	that								is	a	linearization	of													,		not	a	
linearization	of												.

M
  
R

X( )

S

x( )

  
R

X( )

 

X0


′X =

X−

X0


′F =

F−

F0

0=R

X0( )+


F0



Again									is	a	linearization	of													,		not	a	
linearization	of												,	the	original	equations,	nor	
is	it	an	adjoint of	the	original	model.

Past	studies	have	tried	to	obtain							through	the	
Fluctuation-Dissipation	Theorem	(FDT),	which	
however	suffer	from	the	fact	that	the	covariance	
matrix	is	often	singular	and	the	system	is	often	
non-normal	 (see	Hassanzadeh and	Kuang,	2016)

M
  
R

X( )

S

x( )

M



• Define the (mean field) state vector to include 
profiles of large-scale T and q anomalies (horizontal 
winds can be included as well)

• This equation assumes that 
– Large-scale T, q completely describe the state of the 

atmosphere, i.e. moist convection is in statistical 
equilibrium with the T, q profiles. Reasonable for 
phenomena with periods of days or more.

– Linearity holds for perturbations of relevant sizes

Linear	response	functions	

d

′X

dt
=M


′X


′X



Method of construction
d

′X

dt
⎛
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⎥
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
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′Xn

⎡
⎣

⎤
⎦

•The fastest decaying modes of M (i.e. with the largest (in 
modulus) eigenvalues) have the largest errors
•The slowest decaying modes of M (i.e. the smallest 
eigenvalues) are the most accurate.
•The latter are of the most interest for coupling with large-
scale flows

Prescribed forcing (precisely known) Equilibrium response X
(has uncertainties)

δλ ∝ λ2 δXErrors	in	eigenvalue	λ:



Approximately linear. Combining the two to increase accuracy

Linearity of convection!

that tropospheric temperature and moisture variations
seen in convectively coupled waves simulated with this
CSRM can be adequately captured as their linear com-
binations; no systematic effort, however, was made to
minimize the number of basis functions.

For each of the basis functions we perform two runs:
one with a positive forcing and the other with a negative
forcing. The peak magnitude of the forcing is 0.5 K day21

for temperature and 0.2 g kg21 day21 for specific hu-
midity. The magnitudes are halved for basis functions
that peak above 500 hPa and halved again for those that
peak above 250 hPa. We first run the model to statistical
equilibrium before introducing the forcing. The model is
then run for another 200 days, and the last 150 days are
averaged and compared to the control simulation to give
the anomalous state vector. A typical example is shown
in Fig. 1, which shows the temperature (Fig. 1b) and
specific humidity (Fig. 1c) anomalies that are in statis-
tical equilibrium with an anomalous convective heating,
shown in Fig. 1a, and zero anomalous moisture tendency
everywhere. Estimates from both a positive forcing ex-
periment (circles) and negative forcing experiment (crosses)
are shown. The uncertainty estimates are given by the
standard deviation divided by the square root of the
effective sample size, which takes into account the au-
tocorrelation of the time series. Agreement (or disagree-
ment) in the results from the positive and negative forcing
experiments gives some indication of the degree of
nonlinearity. The agreement seen in Fig. 1 is typical.
There are occasional cases of larger disagreement, which
can be reduced by halving the forcings. Such fine-tuning

does not affect the results reported in this paper and will
not be discussed further. Overall, these comparisons in-
dicate that the statistics of the cumulus ensemble respond
approximately linearly to sizable perturbations and the
linear response functions will be relevant to convectively
coupled waves with realistic amplitudes. As a side note,
the broad resemblance of the T, q anomalies to a shift
toward a colder moist adiabat and a drier condition
holds for other forcing patterns as well. As will be dis-
cussed in section 5, such a pattern represents the slowest
decaying eigenmode of M, which is amplified in the
equilibrium responses. To form matrix M, we further
combine results from the positive and negative forcing
experiments, which cancels the quadratic terms in the
Taylor expansion and improves the accuracy. The re-
sults are then projected onto the basis functions through
a linear regression that minimizes the squared residue,
which is weighted by the mass of each layer divided by
the estimated uncertainty.

Repeating the above for all the basis functions gives
matrices X and Y in Eq. (2), and matrix M is then com-
puted. As the fastest decaying modes are most prone to
error, often there is an eigenvalue with a large positive
real component. Since the CSRM equilibrium state is ev-
idently stable in the absence of feedbacks from the large-
scale flow, all eigenmodes are expected to decay so we
simply reverse the sign of this eigenvalue and reconstruct
the matrix M. As reasoned earlier and confirmed by
tests, coupling with large-scale waves is not sensitive to
the treatment of this fast decaying mode as long as its
sign is corrected so that it is not fast growing.

FIG. 1. An example of the temperature (b) and moisture (c) anomalies that are in equilibrium with an anomalous
convective heating profile shown in (a) and zero convective moistening tendencies everywhere.
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Kuang,	2010,	J.	Atmos.	Sci.



Full CRM
When coupled to 2D gravity wave 

Both have a phase speed of ~14m/s and similar growth rates

Linear response functions
Temperature

Humidity

Vertical	velocity



A	gravity	wave	propagating	to	the	right

Warm

Cold

Cold

Warm

Surface

Tropopause

Upper	
troposphere

Lower	
troposphere

Direction	of	wave	propagation
Direction	of	time	for	an	observer	
on	the	ground



Warm

Cold

Cold

Warm

Convection	responds	to	cooling	of	the	lower	
troposphere

Surface

Tropopause

Upper	
troposphere

Lower	
troposphere



Deep	convection	and	the	associated	vertical	
advection	moisten	the	free	troposphere

Moist Dry

Surface

Tropopause

Upper	
troposphere

Lower	
troposphere

Direction	of	time	for	an	observer	
on	the	ground



With	a	more	moist	free	troposphere,	 convection	
reaches	deeper	

Warm

Cold

Cold

Warm

Moist Dry

Surface

Tropopause

Upper	
troposphere

Lower	
troposphere

A	moisture-stratiform instability



Symmetric	(log10(Power))Antisymmetric	(log10(Power))

Dot	size	
proportional	to	
growth	rate

Extension	to	the	
equatorial	beta	
plane
(Andersen	and	Kuang	
2008)	



Emanuel	SchemeCloud	Resolving	Model

These	comparisons	offer	clarity	on	why	schemes	
don’t	produce	convectively	coupled	tropical	waves.	

dT/dt	(K/day)	dq/dt	(g/kg/day)

Convective	tendency	
anomaly

Moisture	
anomaly

Herman	and	Kuang,	2013

Direct	evaluations	of	the	macroscopic	behaviors	of	
convective	schemes



Linear	response	functions	can	also	help	to	constrain	
formulations	of	convective	parameterizations

Tian	and	Kuang,	2016

  
ε∝

1
wdSuggests	fractional	entrainment	rate

w	is	updraft	vertical	velocity,	d	is	updraft	size



What about the Madden-Julian Oscillation?

Feedbacks from interactive surface heat 
flux and radiation appear essential. 
(Maloney, 2009; Kiranmayi and Maloney, 2011; Andersen and Kuang, 
2012; Wu and Deng, 2013; Kim et al., 2014; Sobel et al., 2014; Arnold et 
al., 2015; Ma and Kuang 2016; among many others).



Convective	self-aggregation

Day	10 Day	50

Bretherton	et	al.,	2005

Day	20



A linear radiative-convective instability 
for the initial phase of self-aggregation

Emanuel, Wing, Vincent, 2014



A linear radiative-convective instability 
for the initial phase of self-aggregation

Emanuel, Wing, Vincent, 2014



Radiative heating from a 20% reduction in RH

Pressure (hPa) Right figure is from Emanuel 
et al., 2014 for RCE at 25C 
and 25hPa layers.

Left figure is for a fully 
developed cumulus field

Examine these ideas using linear response functions of 
a limited domain (128km by 128km) CRM

P
(hPa)



Radiative heating from a 20% reduction in RH

Pressure (hPa)

clear-sky radiation

Right figure is from Emanuel 
et al., 2014, JAMES for RCE 
at 25C.



Couple linear response functions to linear gravity waves

This could explain why dry patches dominate the 
growing phase of the self-aggregation. Kuang,	in	preparation



http://www.rantic.com/articles/social-media-tools-nail-hammer/



Video	credit:	NASA	
Goddard	Scientific	
Visualization	Studio	
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Climatology	of	zonal	wind



Zonal	(and/or	
time)	mean	jet

Transient	
Eddies

Jet	dynamics

Momentum&
heat	fluxes

Generation/
propagation/
dissipation

The	strong	coupling	between	eddies	and	the	jet	is	key	to	the	
jet	dynamics.



Image	Credit:	IPCC	AR4	report

850hPa	Geopotential	
height

Southern	
annular	
mode



Credit:	Jianping	Li
See	also,	Kwok	and	Comiso,	2002

Trend	in	Southern	Annular	Mode	index



Projected pole-ward shift of the jet

Analysis	of	CMIP5	models	
by	Vallis	et	al,	2014



Annular modes are too persistent in IPCC models, 
suggesting the models may also overestimate the 
response to climate forcing

Gerber	et	al.,	GRL,	2008

Autocorrelation	
timescale



A	simple	model	by	Lorenz	and	Hartmann	(2001)

dz
dt
=−

z
τ
+Feddy

Feddy = bz+ξ Random	noise	
independent	of	z

How	to	quantify	the	eddy-jet	 feedback?

Z:	the	zonal	index			Feddy:	eddy	forcing



Power	spectrum	of	
eddy	forcing	Feddy

Power	spectrum	of	
zonal	index	Z

Lorenz	and	Hartmann	(2001)



Lorenz	and	Hartmann	(2001)

FeddyFeddy



Contemporaneous	regression	doesn’t	
give	an	estimate	of	the	feedback
Let’s	look	at	a	simple	example

  

dx
dt

=−
x
τ

+Feddy

Feddy = ax+ξ

τ = 1 day
Random	noise



Generated	with	a=0

dx
dt
=−

x
τ
+Feddy

Feddy = ax+ξ

τ = 1 day



Lorenz	and	Hartmann	(2001)

Key	assumption:	random	(or	mean-state	
independent)	 eddy	forcing	and	zonal	index	
decorrelate	at	long	(positive)	lags



Simpson	et	al.	(2013)

Key	assumption:	random	(or	mean-state	
independent)	 eddy	forcing	and	zonal	index	are	
uncorrelated	at	lag	l.	

 
b=

corrl z,Fz( )
corrl z, z( )

corrl(x,y)	is	the	lag	correlation	when	x	leads	y	by	l.



Power	spectrum	of	the	eddy	forcing	has	a	
broad	peak,	and	the	previous	assumptions	
may	not	hold.



Test these approaches in a simple dry general 
circulation model where the linear response 
functions can provide the ground truth.

Atmosphere-only (zonally symmetric forcing, no 
ocean, ice, snow, topography, or seasonal cycle …) 

Temperature T (K) Zonal wind U (m/s)



• Define the (mean field) state vector to include 
include anomalous zonal mean zonal wind U and 
zonal mean temperature T

• This equation assumes that 
– Zonal mean T, U completely describe the state of the 

atmosphere, i.e. baroclinic eddies are in statistical 
equilibrium with the T, U distributions. Reasonable for 
phenomena with timescales of days or more.

– Linearity holds for perturbations of relevant sizes

Linear	response	functions	

d

′X

dt
=M


′X +

′F

′X

See	Hassanzadeh	and	Kuang	(2016ab)	for	details



“Perpetual	annular	mode”
Internal	annular	mode	patternForced	annular	mode	pattern

  0=M

′X +

′F



Estimated	feedback	strengths
Lorenz	and	Hartmann	2001 Simpson	et	al.	2013

Ma	et	al.,	2017



Power	spectrum	of	eddy	forcing



A	new	low- pass	
filtering	approach	
(Ma	et	al.,	2017)

Key	assumption:
The	mean-state	
dependent	 (or	
feedback)	component	
dominates	the	eddy	
forcing	at	low	
frequencies.



Applied	to	reanalysis

Further	work	should	include	the	seasonal	cycle

Lorenz	and	Hartmann	2001 Simpson	et	al.	2013 Ma	et	al.	2017



2010	Russian	heat	wave	and	Pakistan	flood

AIRS	
temperature	
anomaly	
(color)
MODIS	daily	
fire	pixels	
(green	dots)

Lau	and	Kim	
(2012)



August	5-12,	2013,	NASA	image



• Arctic amplification reduces the surface equator-
to-pole temperature gradient, and hence the jet 
speed.

• More blocks are observed to happen during the 
negative phase of the annular mode, which also 
has a slower jet (Cohen et al. 2014).

• Does it mean there will be more blocks with 
Arctic amplification (Francis and Vavrus, 2012)?



In a simple dry dynamic core, there are also more 
frequent and more poleward blocks in the negative 
phase of the annular mode (when the jet is weaker and 
more equatorward)

Y	axis	is	%	per	
latitude	bin	(2.8	
degrees)

Positive	phase		
Negative	phase

Latitude



Reduced blocking in 
the “permanent” 

negative phase of the 
annular mode

All	blocks
Long	blocks

Strong	
blocks

km2

km2

km2

More	negative	AO



Summary
Linear response functions can be 
usefully constructed and applied in a 
number of problems in atmospheric 
dynamics.



Northern	
annular	
mode

Credit:	NCEP	CPC
Following	Thompson	
and	Wallace,	2000



Northern	annular	mode

From	Mike	Wallace



• Why	do	convectively	coupled	waves	exist?	
• What	set	their	scales	and	speeds?
• Why	are	certain	wave	types	stronger	than	the	
others?



Let’s	start	with	a	jet	anomaly

anomalous	
westerly

Anomalous	
westerly

z

y

Warm Cold



Boundary	layer	friction	reduces	boundary	 layer	
winds	and	enhances	temperature	gradient

-

-

z

y

Warmer Colder



Eddy	heat	flux	reduces	temperature	gradient	and	
enhances	boundary	layer	winds	and	reduces	upper	

level	winds

-

+

z

y

Less	ColdLess	Warm



Eddy	momentum	flux	enhances	upper	level	
winds	and	the	temperature	gradient	

+

+
Warmer

Wave	
dissipation

Colder

Wave	
dissipation



Target

Result

ΔU	(m/s)ΔT	(K)

Shooting	for	a	“permanent”	negative	
phase	of	the	annular	mode



Self-aggregation with a globally uniform SST and no rotation

Arnold and Randall, 2015



Space-time spectra of OLR (log10Power)
(averaged over 15N-15S, 20 years) 

Wheeler and Kiladis, J. Atmos. Sci., 1999



To	identify	the	basic	instability	mechanisms,	we	
constructed	a	simple	model	(6	to	2	ODEs)	that	is	
consistent	with	the	linear	response	functions

Kuang,	2008

Growth	rates

~6000km



But, there are also stabilizing processes:

Through enhanced detrainment of updrafts, 
convection will damp the dry anomaly, with a 
timescale about 1-2 days in Radiative 
Convective Equilibrium.



Method of construction

 

dx
dt

⎛
⎝⎜

⎞
⎠⎟ 1

dx
dt

⎛
⎝⎜

⎞
⎠⎟ 2

... dx
dt

⎛
⎝⎜

⎞
⎠⎟ n

⎡

⎣
⎢

⎤

⎦
⎥ = M

x1
x2 ... xn[ ]

•The fastest decaying modes of M (i.e. with the largest (in 
modulus) eigenvalues) have the largest errors
•The slowest decaying modes of M (i.e. the smallest 
eigenvalues) are the most accurate.
•The latter are of the most interest for large-scale flows

(minus) prescribed forcing 
(precisely known)

Equilibrium response X
(has uncertainties)

δλ ∝ λ2 δXErrors	in	eigenvalue	λ:

Analogous	to	what’s	done	for	moist	convection	in	Kuang	(2010)



dT/dt
(K/day)

ΔT
(K)

(m/s)

An	example

Latitude Latitude



Jet	stream	variability

• Annular modes (leading mode of internal variability as 
well as of response to external forcing)

• Blocks (contribute to extreme weather such as heat 
waves, cold spells, droughts, and heavy precipitation)



The set of forced runs provides a mapping between 
time tendencies and the state vector. 

The linear response functions are linear combinations 
of the forced runs so that the state vectors, instead of 
the tendencies, are compact in the mapping.

Eddy statistics from this set of forced runs can be 
linearly combined in a similar fashion to give changes 
in eddies caused by a particular change in the state 
vector



Lorenz	and	Hartman	2003

Vertical	
structure	
in	zonal	
wind

Pr
es
su
re
	(h

Pa
)



Annular mode in the simple model
(First principle component of the control run daily data)



• This self-aggregation in SPCAM has a column moist static energy 
(MSE) budget similar to those in cloud-resolving models (e.g. Wing 
and Emanuel, 2013) 

• Self aggregation in this simple setting is intriguing and potentially 
relevant to the MJO

Time evolution 
of the PDF 



• Figures similar to Arnold and Randall (2015), which further showed 
that this self-aggregation in SPCAM has a column moist static 
energy (MSE) budget similar to those in cloud-resolving models 
(e.g. Wing and Emanuel, 2013) 

• Self aggregation in this simple setting is intriguing and potentially 
relevant to the MJO

Time evolution of the PDF PDF averaged over days 50-150 



Cloud resolving model Linear response function

Time 
evolution 
of 
precipitable 
water PDF

Snapshot 
of 
precipitable 
water at 
day 30

Both with bulk formula for surface fluxes with constant 5m/s wind

Replace the CRM in SPCAM with its linear response function 



Let’s	look	at	a	simple	example

dz
dt
=−

z
τ
+Feddy

Feddy = bz+ξ

τ = 1 day Random	noise	
independent	of	z



Generated	with	b=0

dz
dt
=−

z
τ
+Feddy

Feddy = bz+ξ

τ = 1 day

Z



• The linear response function does not produce the same 
degree of self-aggregation seen with the CRM.

• Radiative feedback does enhance variance in column 
precipitable water. 



With rotation: Spectra of 500hPa ω

Linear 
response 
function

Full CRM



Potential differences between the CRM and 
the linear response functions
• Stochastic noises 
• Time lag in the convective response
• Inaccuracies in the linear response functions 
• Nonlinearity (state dependence) in the 

convective response



Coupling the linear response function to linear gravity waves

RCE reference state:
(5000km horizontal 
wavelength)

Convectively coupled 
waves grow

(Recall that these are 
linear calculations)



Moist reference state:
(5000km horizontal 
wavelength)

Convectively coupled 
waves decay

(Recall that these are 
linear calculations)

Coupling the linear response function to linear gravity waves



Moisture 
anomaly

Total 
Temperature 
Tendency

Radiative
Tendency

Moisture 
tendency

An illustrative example

Radiative cooling can lead to amplification of the original dry 
anomaly, but convective moistening can also damp it.



A moist and a dry reference state

Mean precip:  8.0mm/day, 3.5mm/day, 2.8mm/day, respectively 



Moisture 
anomaly

Total 
Temperature 
Tendency

Radiative
Tendency Moisture 

tendency

Responses to a dry anomaly

The dry and moist reference states have similar radiative 
feedbacks but the convective damping of the moisture 
anomaly is weaker in the dry state.



A dry reference state:
(5000km horizontal 
wavelength)

A stationary “moisture” 
mode grows

(Recall that these are 
linear calculations)

Coupling the linear response function to linear gravity waves



• Linear response functions of a cloud resolving 
model support linear radiative convective 
instability hypothesized in Emanuel et al. (2014).

• However :
– Cloud radiative feedback is important
– The instability is stronger for a dry mean state, 

which could explain why growth of dry patches 
dominates the self-aggregation.


