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(Hansen et al., 2012)

Temperature has shifted higher, but have the tails also changed?

• Sample temperature variance in 
1981-2010 is 1.9 times that in 
1951-1980.

• But removing the sample mean from 
both periods decreases the variance 
ratio to 1.5.

• Detrending each time series during 
each period reduces the variance ratio 
to 1.2.

• Accounting for the 35% decrease in 
temperature observations from the first 
to second period makes the variance 
ratio indistinguishable from 1.  

(Rhines and Huybers, 2013)
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(Schär et al., 2004)

Are individual heat waves anomalous?



(Barriopedro et al., 2011)

Are individual heat waves anomalous?



Temperatures evolve as an auto-regressive order one process in time, 

Where the innovations are multivariate normal and have a spatial 
covariance that decays exponentially, 

Instruments are represented as true temperature plus noise,

And proxies as having a linear relationship with true temperature and being noisy,

(1)

(2)

(3)

(4)

A Bayesian Algorithm for Reconstructing Climate 
Anomalies in Space and Time (BARCAST) 

(Tingley and Huybers, 2010a,b)



BARCAST differs from typical reconstruction techniques through 
estimating true temperature from both proxies and instruments

Typical formulation

BARCAST



Applying BARCAST to a multi-proxy dataset

251 Instrumental (Apr-Sep)

96 maximum tree ring density

18 ice core δ18O

11 varve sediment thickness

5ox5o target location grid

(Tingley and Huybers, 2013)



Statistical assessment of whether an event is uniquely 
extreme requires pathwise uncertainties, not pointwise ones.

Mean

95% pointwise level

95% pathwise level

600 independent draws from a normal 
distribution with zero mean and unit variance



Reconstructed Arctic temperature over the last 600 years: 
2005, 2007, 2011, and 2012 were the warmest on record

year

Kaufman 2010



The hottest temperatures in the last 600 years  
are clustered in the last two decades.

year



A similar distribution of extremes is obtained from ice and 
varve data alone, excepting that they do not cover the most 
recent decade.

year
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The five hottest anomalies in the last 20 years are far in 
the tail of inferred summer temperature variability, even 
after shifting the mean.



They are still far in the tail after selecting just the 
warmest years in the last twenty within each grid box.
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But these extreme events are consistent with expectation 
after shifting the mean and choosing the five hottest events 
from amongst all grid boxes during the last twenty years.
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Changes in temperature extremes for Redwood County, MN.

Trend in the 
95th percentile 
of temperature 
determined 
using quantile 
regression



Trends in 95th percentile of summer growing-season 
temperature: curious cooling in agricultural regions

curious
cooling



Zoom-in on the U.S. midwest

Trend in 95th percentile in oC per century

(Mueller et al., 2016)



Hypothesis i: conversion of land to crop use 

The pattern of crop conversion over the last century does not  
correspond to observed regions of cooling in extreme temperatures.

(Mueller et al., 2016)



Hypothesis ii: increased irrigation 

significant at levels of
P<0.05 and P<0.01 

Regions with increased irrigation show marked cooling in extreme 
temperatures, but these do not account for much of the spatial pattern



Field studies demonstrate that more recent cultivars of wheat, soy, and maize each show 
lower canopy temperatures.  Wheat and soy cooling is associated with greater stomatal 
conductance.  Maize cooling may be associated with delayed leaf senescence and 
rooting that gives greater access to water. 

Change in Net Primary Production gC/(m2yr) Change in Net Primary Production gC/(m2yr)

✓ Hypothesis iii: increased agricultural intensity 



Loss of evaporative cooling leads to higher temperatures 
and greater plant stress.



Irrigated                                            Rainfed

During drought, however, rainfed agricultural 
regions return to historically high temperatures 

(Mueller et al., 2016)



Agricultural is a major driver of change.  It involves 45% of 
Earth’s land surface, 65% of global water withdrawal, and 25% 
of human greenhouse gas emissions. 

(Ramankuty et al., 2008)



GOME-2 data from  
Joiner et al. 2013

Peak monthly chlorophyll fluorescence is greater in mid-latitude 
agricultural regions than in tropical rainforests



Seven agricultural regions where summer primary 
production has increased since 1960.

correlation btw 
NPPan and 

temperatures



North China Plain: Sun-induced chlorophyll fluorescence 
(SIF) peaks during summer cropping.

(Mueller et al. 2017)



North China Plain: The spatial pattern in cropland area trends do 
not correspond with cooling of 95th percentile temperatures, but 
trends in irrigation show some relationship

Area Equipped for Irrigation
(% grid cell per decade) 

Cropland Area Trend
(% grid cell per decade) 



North China Plain: Precipitation variations are weak, but trends 
in summer cropping intensity are clearly associated.

Trend in Summer Primary Production
(g C m-2 year-1) 

Summer Precipitation trend
(mm per decade) 



East China: Sun-induced chlorophyll fluorescence (SIF) shows 
two peaks associated with double cropping an winter wheat



East China: Not cropland area, but irrigation corresponds with 
regional cooling

Area Equipped for Irrigation
(% grid cell per decade) 

Cropland Area Trend
(% grid cell per decade) 



East China: Precipitation has a weak relationship, whereas 
trends in summer primary production are clearly associated.

Trend in Summer Primary Production
(g C m-2 year-1) 

Summer Precipitation trend
(mm per decade) 

These results are broadly consistent with those of Hu et 
al. (2010), Cao et al. (2015), and Zhao et al. (2016).



Outline

Part 1.
Mean temperatures are increasing, but high-temperature 
excursions above the mean are generally stable. 
(M. Tingley and A. Rhines)

Part 2. 
The hottest temperatures have been cooling in regions 
with rapid agricultural intensification
(N. Mueller, E. Butler, A. Rhines, and N. Holbrook)

Part 3. 
Implications for yield trends
(N. Mueller, E. Butler, and N. Holbrook)



Year

G
lo

ba
lly

 re
qu

ire
d 

fo
od

 
(T

ril
lio

n 
kc

al
 p

er
 d

ay
)

Food requirements are anticipated to rise at only slightly less 
than a linear rate based upon UN population predictions.



The trend in US corn yield indicates doubling from 1965-2014,
though there is substantial volatility. 
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Temperature explains the majority of yield volatility

Heatwaves
(Tmax −30)> 0

day
∑

Killing degree 
days are 
defined as the 
sum of 
temperatures 
exceeding an 
optimum of 
30oC,

Colder

Hotter



Over the last 40 years, mean warming coupled with fewer 
heatwaves has allowed for longer-maturing crops with less 
exposure to heat stress.

(Butler et al., in prep)
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28% of yield increases in the U.S. Midwest are attributable to 
better weather.  The case appears similar for China.   



Conclusions

1. The hottest temperature anomalies of the last twenty years are 
consistent with a simple shift of the historical temperature 
distribution towards warmer values, when the fact that these 
events are selected across space and time is also accounted for. 

2. There is a pattern, however, regarding cooling of the hottest 
growing-season temperatures in regions experiencing 
agricultural intensification.

3. More productive croplands generally have greater capacity for 
evapotranspiration, leading to increased latent heat flux and 
reduced sensible heat flux.  This effect operates most strongly 
when vapor pressure deficit is highest, thus suppressing 
temperatures on the hottest days.

4. Improved weather account for roughly a quarter of improved corn 
yields in the U.S. Midwest.  A reversal in these advantageous 
trends could jeopardize continued increases in yields in the U.S. 
and elsewhere.





Increasing pressures on global agriculture

Increasing food demand 
Up ~70% by 2050

Climate disruption 
Projected net losses in production

Myers, et al. in press, Ann. Rev.Tilman et al. 2011

Income-dependence of calorie 
consumption

Global average temperature change 
(relative to 1900–2000 average)



NPPha: NPP per harvested area (g m-2 yr-1) 
Y: yield (t ha-1) 
DF: dry fraction (%) 
C: carbon content (%) 
HI: harvest index 
AF: aboveground fraction 
c is crop, k is county, y is year

crop NPP is calculated from yield data

sum over 12 summer crops; normalize by county area
HA: harvested area (hectares) 
TA: county area (hectares)

Calculating changes in cropping intensity



Global trends in summer extreme temps

JJA / DJF
Note: dot size scales with 
physical area 
surrounding weather 
station using Voronoi/
Thiessen polygons 

Temperature trends are 
from 1961–2014



US Canada

E Asia (north) E Asia (south) Argentina



Consistent global NPPan–Tx95
associations since 1961

Central N. America Northern N. America

* ** ** ** ** ** ** ** **



Consistent global NPPan–Tx95
associations since 1961

US Corn Belt Canadian Prairies
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planting/harvest data from Sacks et al. 2010 
crop fractions from Monfreda et al. 2008 



Consistent global NPPan–Tx95
associations since 1961

East Asia – north of 40°N East Asia – south of 40°N

* * *** ** ** ** **
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Consistent global NPPan–Tx95
associations since 1961

Northeast China North China Plain
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Consistent global NPPan–Tx95
associations since 1961

Western Europe
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Consistent global NPPan–Tx95
associations since 1961

Argentina Southern Australia
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1. The last twenty years featured the warmest years of the last 600 at high 
latitudes.  

2. The hottest temperature anomalies of the last twenty years are consistent 
with a simple shift of the historical temperature distribution towards warmer 
values, when the fact that these events are selected across space and time 
is also accounted for.  

3. At more regional levels, changes in daily maximum temperature are 
variously found to be muted or amplified relative to changes in mean 
summer temperature. 

4. Grassland and shrubland regions show higher summer temperature variability 
but muted increases in extremes, whereas forest, cropland, and urban 
regions generally show amplified changes in extremes.   

5. Deficits in precipitation are associated with the most extreme temperatures 
in all regions, but build in over a longer period in regions with amplified 
extremes.  Drying likely causes a loss of evaporative cooling and transition 
into a temperature regime with higher variance. 

Conclusions



But how much does short-run weather tell us about longterm 
climate impacts?  The difference is adaptation.

Killing Degree Day 
climatology increases 
from 100 (oC days) in 
the North to 500 (oC 
days) in the Southwest. 
Corn is less sensitive to 
Killing Degree Days in 
hotter regions.

Using this spatial 
adaptation as a proxy 
for temporal adaptation 
implies that yields 
losses from a 2oC 
warming can be 
mitigated from 14% to 
only a 4% decline.

(Butler et al. 2013, 2015)



Sensitivity of yield to high temperatures 
is lower in hotter regions.  

Using the observed 
spatial adaptation as 
a proxy for temporal 
adaptation implies 
that yields losses 
from warming can be 
mitigated.



Differences in yield loss without and with adaptation are big; 
any yield prediction should account for adaptation.

14% loss in production 
from 2oC warming

0% loss in production 
from 2oC warming



Multi-model projection of changes in 
rainfall illustratelarge uncertainties

(IPCC AR5, WG1)

Stippling 
indicates that 
the mean 
change 
exceeds the 
95% interval 
across models

Determining future precipitation patterns is fundamental to
understanding the consequences of climate change



Can we better predict heatwaves

(McKinnon et al., 2016)
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Figure 1 | Hot days and heat events are defined from station measurements of daily maximum summer temperature. a, The lower panel shows the time
series of T95 for 2012, which featured three heat events, identified with filled circles as events 1, 2 and 3. Average daily maximum temperature (TMAX)
anomalies at individual weather stations during the hottest day of each of these heat events are shown in the upper panels. Stations comprising the hottest
5% of the domain are outlined in black, and the colour bar is saturated at 8 �C. Hot days (indicated by red shading in the time series) are defined as T95
exceeding one standard deviation above the mean, where mean and standard deviation are calculated from all summers between 1982–2015. b, The
distribution of T95 for each year of the study (1982–2015). Distributions are estimated using a kernel density smoother with a bandwidth of 0.5. The
median value for each distribution is shown with a black horizontal line, and the dashed line is at one standard deviation above the mean of T95.

30-day lead time, below-average SPI values correspond to hot days
occurring with a true positive rate of 71% and a false positive rate
of 46%. These rates can be translated into an odds ratio, defined as
[TPR(1�FPR)] / [FPR(1�TPR)], equal to 2.8, or almost a three-
fold increase in the probability of a hot day (Supplementary Fig 4a).

The choice of threshold for a prediction can be varied depending
on tolerance for true and false positives, with more negative SPI
thresholds decreasing both the true and false positive rate. This
trade-o� is formalized by relative operating characteristic (ROC)
curves17 that represent the relationship between true and false
positive rates as a function of threshold (Fig. 2). ROC curves are
assigned a score by integrating the area under the curve. These
scores are used as the skill metric throughout the analysis because

they are appropriate for assessing both binary and unusual events,
whereasmany conventional skill scores tend to zero for rare events18.
A model that always has the same true and false positive rate has
a ROC score of 0.5, and is no more useful than a coin flip. A
relevant baseline for comparison is a seasonal prediction model19
that yielded ROC scores for extreme temperature events between
0.50–0.52 when applied to various regions across the globe.

At zero lead time, SPI-based predictions of hot days have a ROC
score of 0.73, consistent with the expected relationship between dry
soils and sensible heating. ROC scores decrease with lead time and
are no longer significant (ROC score< 0.6) by a lead time of 45 days.
Significance is estimated by bootstrapping and is presented at the
0.05 level throughout the paper (see Methods).
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Heat index for the Eastern U.S.



Pattern of sea surface temperature associated with 
summer heat waves in the Eastern US
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A tri-pole in Pacific mid-latitude sea surface temperature 
is characteristic during Eastern US heat waves.

(McKinnon et al., 2016)



Pattern five days prior to a heat wave
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The sea surface temperature tri-pole causes anomalous atmospheric wave 
activity (red arrows) to converge on the Eastern US.

(McKinnon et al., 2016)



Pattern ten days prior to a heat wave
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Development of the sea surface temperature tri-pole follows a characteristic 
pattern that can be reliably tracked more than 40 days prior to a heat wave.

(McKinnon et al., 2016)



Heat wave odds up to 40 days out change by >2X for one-
sigma anomalies in the prediction pattern

Prediction Pattern Index < -1σ       Prediction Pattern Index >1σ

odds ratio of having a heat wave relative to climatology

 (significance is confirmed through cross-validation on withheld data)

(McKinnon et al., 2016)



Animation: co-evolution of SST, z300, WAF across the NH



hot day

heat event

Quantifying regional heat: T95 = spatial 95th percentile of TMAXʹ
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Figure 1 | Hot days and heat events are defined from station measurements of daily maximum summer temperature. a, The lower panel shows the time
series of T95 for 2012, which featured three heat events, identified with filled circles as events 1, 2 and 3. Average daily maximum temperature (TMAX)
anomalies at individual weather stations during the hottest day of each of these heat events are shown in the upper panels. Stations comprising the hottest
5% of the domain are outlined in black, and the colour bar is saturated at 8 �C. Hot days (indicated by red shading in the time series) are defined as T95
exceeding one standard deviation above the mean, where mean and standard deviation are calculated from all summers between 1982–2015. b, The
distribution of T95 for each year of the study (1982–2015). Distributions are estimated using a kernel density smoother with a bandwidth of 0.5. The
median value for each distribution is shown with a black horizontal line, and the dashed line is at one standard deviation above the mean of T95.

30-day lead time, below-average SPI values correspond to hot days
occurring with a true positive rate of 71% and a false positive rate
of 46%. These rates can be translated into an odds ratio, defined as
[TPR(1�FPR)] / [FPR(1�TPR)], equal to 2.8, or almost a three-
fold increase in the probability of a hot day (Supplementary Fig 4a).

The choice of threshold for a prediction can be varied depending
on tolerance for true and false positives, with more negative SPI
thresholds decreasing both the true and false positive rate. This
trade-o� is formalized by relative operating characteristic (ROC)
curves17 that represent the relationship between true and false
positive rates as a function of threshold (Fig. 2). ROC curves are
assigned a score by integrating the area under the curve. These
scores are used as the skill metric throughout the analysis because

they are appropriate for assessing both binary and unusual events,
whereasmany conventional skill scores tend to zero for rare events18.
A model that always has the same true and false positive rate has
a ROC score of 0.5, and is no more useful than a coin flip. A
relevant baseline for comparison is a seasonal prediction model19
that yielded ROC scores for extreme temperature events between
0.50–0.52 when applied to various regions across the globe.

At zero lead time, SPI-based predictions of hot days have a ROC
score of 0.73, consistent with the expected relationship between dry
soils and sensible heating. ROC scores decrease with lead time and
are no longer significant (ROC score< 0.6) by a lead time of 45 days.
Significance is estimated by bootstrapping and is presented at the
0.05 level throughout the paper (see Methods).
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SST anomalies on hot days exhibit structure in the midlatitude Pacific



SST anomalies on hot days exhibit structure in the midlatitude Pacific

Pacific Extreme 
Pattern (PEP)



ROC scores ≥ 0.6 
significant at the 

0.05 level
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Pacific SSTs skillfully predict hot days at lead times up to 50 days
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A mechanistic interpretation of 
intensification-driven cooling

• More productive croplands have greater capacity for 
evapotranspiration, leading to increased latent heat flux 
and reduced sensible heat flux. Greatest temperature 
impact occurs on hot days.

• Additionally, this would tend to increase atmospheric 
moisture and precipitation, consistent with precipitation 
and humidity trends (e.g. Brown and DeGaetano 2013).

• Cooling by enhanced evapotranspiration can be tested by 
examining the relationship between cooling and drought.


