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IPCC 2013 summary for policy makers on

Equilibrium Climate Sensitivity

(D.2 pl4)

* The equilibrium climate sensitivity quantifies the response of the climate system
to constant radiative forcing on multi- century time scales. It 1s defined as the
change 1n global mean surface temperature at equilibrium that 1s caused by a
doubling of the atmospheric CO2 concentration. Equilibrium climate sensitivity

1s likely 1n the range 1.5°C to 4.5°C (high confidence), extremely unlikely less
than 1°C (high confidence), and very unlikely greater than 6°C (medium

confidence)16. The lower temperature limit of the assessed likely range is thus
less than the 2°C in the AR4, but the upper limit is the same. This assessment
reflects improved understanding, the extended temperature record in the
atmosphere and ocean, and new estimates of radiative forcing.
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Footnote 16

No best estimate for equilibrium climate sensitivity can now be given because of a
lack of agreement on values across assessed lines of evidence and studies.



Forster (2016) summarizes the equilibrium climate

sensitivities inferred from models and observations
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“The criterion of the scientific status of a theory is its
falsifiability, or refutability, or testability.” Karl Popper (1963)

1. The more a theory forbids, the better itis. A
theory which is not refutable by any conceivable
event is nhon-scientific.

2. It is easy to obtain confirmations, or verifications,
for nearly every theory — if we look for
confirmations.

3. Every genuine test of a theory is an attempt to
falsify it, or to refute it.

(Excerpted from Conjectures and Refutations
by Karl R. Popper, 1963)



Lewis and Curry (2015) estimate an Equilibrium Climate Sensitivity of

1.64°C, lower than the 2—4.5°C range quoted earlier by the IPCC.

T2000 — T1870
ECS = F.
2xC02 (F2000 — F187O) o (Q2000 - Q187O)

ECS: equilibrium climate sensitivity,

Fyxcoo: forcing due to doubling of CO2 (3.71 W/m?),
Q1870: initial heat uptake (015 + 0.08 W/m2),

(Q2000: final heat uptake (0.51 4 0.09 W/m?),

AT': warming (0.71 £ 0.08°C),

AF: change in forcing (1.98 £ 0.5 W/m?),

Changes are the difference between 1859-1882 and 1995-2011 averages.



‘Empirical’ estimates of Equilibrium Climate Sensitivity depend
upon muliple lines of observational analysis, each uncertain.

ECS = F 2xC02
(Fa000 — Fis70) — (Q2000 — Q1870)
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Outline

1. Recently observed versus simulated temperature trends
(M. Lin, 2016)

2. Correcting historical temperature estimates
(C.Chan, in prep.)
3. Seasonal constraints on today’s energy imbalance
(K. McKinnon, 2016)
4. Earth’s energy imbalance circa 1870
(G. Gebbie, in prep.)
5. Slow mode contributions to equilibrium climate sensitivity
(C. Proistosescu, 2017)



Global Land and Ocean Temperature Anomalies,
January-June
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Global Land and Ocean Temperature Anomalies,
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The IPCC reported that the 1998-2012 trends in observed global average

temperature were significantly lower than in their collection of model results
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Does the pause in Earth’s temperature rise

falsify the IPCC models?
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Does the pause in Earth’s temperature rise

falsify the IPCC models?

Difference between model and observed trends
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Does the pause in Earth’s temperature rise

falsify the IPCC models?

assuming simulation assuming modeling 22
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Does the pause in Earth’s temperature rise

falsify the IPCC models? No, but does this improve confidence?

assuming modeling 22
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Outline

1. Recently observed versus simulated temperature trends
(M. Lin, 2016)

2. Correcting historical temperature estimates
(C.Chan, in prep.)

3. Seasonal constraints on today’s energy imbalance
(K. McKinnon, 2016)

4. Earth’s energy imbalance circa 1870
(G. Gebbie, in prep.)

5. Slow mode contributions to equilibrium climate sensitivity
(C. Proistosescu, 2017)



Sea Surface Temperature observations from buckets per year

(International Comprehensive Ocean-Atmosphere Dataset, 2016)
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Japanese measurements are anomalously cold
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SST correction field 1931

Temperature correction (Celsius)



SST correction field 1932




SST correction field 1933

Temperature correction (Celsius



SST correction field 1934

Temperature correction (Celsius



SST correction field 1935




SST correction field 1936




SST correction field 1937

Temperature correction (Celsius



SST correction field 1938




SST correction field 1939

Temperature correction (Celsius



SST correction field 1940




SST correction field 1941

Temperature correction (Celsius



SST correction field 1942
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SST correction field 1943
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SST correction field 1944
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SST correction field 1945




SST correction field 1946




SST correction field 1947




SST correction field 1948

Temperature correction (Celsius



SST correction field 1949

Temperature correction (Celsius



SST correction field 1950




Corrected SST anomalies in the Northwest Pacific better

correspond to regional land-temperature anomalies
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Corrections to bucket temperature observations imply

order 0.1 degree Celsius uncertainties in global SST
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Outline

1. Recently observed versus simulated temperature trends
(M. Lin, 2016)

2. Correcting historical temperature estimates
(C.Chan, in prep.)

3. Seasonal constraints on today’s energy imbalance
(K. McKinnon, 2016)

4. Earth’s energy imbalance circa 1870
(G. Gebbie, in prep.)

5. Slow mode contributions to equilibrium climate sensitivity
(C. Proistosescu, 2017)




Better measurements of Earth’s energy imbalance would permit

for a more severe test of our models and theory.

I ncom | N Segected Solar Ingorlning 235 If)utgoing
adiation 342 olar ongwave
g 107 Wm*? Radiation Radiation
342 W/m?2 ‘ 342 Wm* 235 Wm?
Reflected by Clouds,
Aerosol and - ’
Atmospheric Emitted by 40

Atmosphers. den Atmospheric

Window

Greenhouse

Absorbed by ikl

67 Atmosphere

Outgoing
341.5 W/m?2

Earth’s energy imbalance: heating of 0.5 +/- 0.4W/m?2 Johnson et al. (2016)



Components of seasonal variability in Earth's energy budget

Energy anomaly (zeta-Joules)
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Seasonal cycle of Earth's net energy budget compared to CERES

satellite observations (Southern Hemisphere dominates)
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Ocean temperatures are not mapped near continental shelves
and in shallow oceans (e.g., by Roemmich and Gilson, 2009)

Map of where ARGO observations regularly extend (cyan),
and regions grouped together for infilling (colors)



In a simulation from CESM1, the seasonal cycle in heating is

accurately estimated when using covariance infilling.
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Annual heating rate is 0.1 W/m= higher in CESM1 simulations

when including the full domain relative to a weighted integral.
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Outline

1. Recently observed versus simulated temperature trends
(M. Lin, 2016)
2. Correcting historical temperature estimates
(C.Chan, in prep.)
3. Seasonal constraints on today’s energy imbalance
(K. McKinnon, 2016)
4. Earth’s energy imbalance circa 1870
(G. Gebbie, in prep.)
5. Slow mode contributions to equilibrium climate sensitivity

(C. Proistosescu, 2017)
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Comparing
against modern
observations, the
Atlantic shows
warming since
1870.

In contrast, the
Pacific shows
cooling, especially
between 3-4km
depth and in
Northern regions.
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Average age of ocean waters at 2500 meters depth
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Gebbie and Huybers (2014)



Average age of ocean waters in the Pacific is greatest at 3km
depth near 40 degrees North
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Gebbie and Huybers (2014)



Changes in ocean temperature since 1870 indicate that waters

formed during the Medieval Warm Period are still cooling,
whereas those formed during the Little lce Age are warming.
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Summary so far

1. Recently observed versus simulated temperature trends
are consistent.

2. Correcting historical temperature estimates implies greater
temperature uncertainty.

3. Seasonal constraints on today’s energy imbalance imply
greater heat uptake in marginal seas.

4. Earth’s energy imbalance circa 1870 indicates that the
ocean may have been cooling.



Updating Lewis and Curry (2015), the central estimate of

Equilibrium Climate Sensitivity rises from 1.6° to 2.6°C

L9000 — 1°
ECS = Foy oo 2000 1870

(FQOOO T F187O) o (Q2000 o Q1870)

F5«co2: forcing due to doubling of CO2

(3.7 W/m?),

(Q1s70: initial heat uptake (0.15 — —0.1 =
(Q2000: final heat uptake (0.51 — 0.6 = 0.

- 0.2 W/m?),
1 W/m?),

AT: warming (0.71 — 0.9 4 0.2°C), (see Richardson 2016)

AF': change in forcing (1.98 — 2.0 £ 0.5

W /m?).



Outline

1. Recently observed versus simulated temperature trends
(M. Lin, 2016)

2. Correcting historical temperature estimates
(C.Chan, in prep.)

3. Seasonal constraints on today’s energy imbalance
(K. McKinnon, 2016)

4. Earth’s energy imbalance circa 1870
(G. Gebbie, in prep.)

5. Slow mode contributions to equilibrium climate sensitivity
(C. Proistosescu, 2017)




In Lewis and Curry’s approach heat uptake should be a

linear function of temperature...
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But the evolution of Q is convex with respect to T in general
circulation models. Such curvature implies that historical

inferences are of an Instantaneous Climate Sensitivity (ICS).

Annual average
10 yr running averge

This curvature is well
known (see Senior
and Mitchell 2000,
Held et al. 2010, and
Armour et al. 2017).
But how to statistically
deal with it has been
unclear.
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T and Q can be well-described using three eigenmodes

having annual, decadal, and centennial timescales

Q (TOA Flux in W/m2)

Annual average
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Posterior Median
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Posterior ECS
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Constant \ line

Eigenmode fits are
made to instantaneous
qguadrupling runs using
full Bayesian inference
of all parameters and
hyper-parameters.
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T (°C) (Proistosescu and Huybers, 2017)



The centennial eignemode ultimately contributes most
warming but is essentially absent from modern temperatures
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Applying historical forcing to a spatially-resolved estimate,

indicates that the Eastern Equatorial Pacific and Southern
Ocean are both far from their equilibrium values.
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Historical inferences downweight slower modes of response,

and inform about an Instantaneous Climate Sensitivity (ICS).
CMIP5 and historical ICS values are entirely consistent.
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Conclusions

- Further analysis of historical observations and longterm radiative
feedback responses indicates no discrepancy with simulations.

» This is not all good news for advancing climate science; we still
need to find ways to meaningfully test our theories and models.

- In order to test Equilibrium Climate Sensitivity we need longterm
observations for which there are two practical options.

- Careful analysis of historical instrumental records may vyield
meaningful constraints, but we are still some ways off.
Historical climate data is nuanced and worse than useless if
interpreted badly.

- Second, paleoclimate records may be useful not only in
extending the record, but perhaps also for filling out and helping
calibrate the historical period.



SST correction field 1940. Hatching indicates regions where
Japanese observations are reported.
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