• 中文
  • About us
    About the Department
    Greetings from the Chair
    Administration
    How to find us
    90th Anniversary
  • Faculty
    Fulltime faculty
  • Research
    Research directions
    Research Highlights
    Laboratory for Climate and Ocean-Atmosphere Studies
    The joint research centre for atmospheric hydrological cycle and weather modification
    PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)
  • Education
  • Lectures
    Distinguished Lectures
  • Recruitment
  • About us
    About the Department
    Greetings from the Chair
    Administration
    How to find us
    90th Anniversary
  • Faculty
    Fulltime faculty
  • Research
    Research directions
    Research Highlights
    Laboratory for Climate and Ocean-Atmosphere Studies
    The joint research centre for atmospheric hydrological cycle and weather modification
    PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)
  • Education
  • Lectures
    Distinguished Lectures
  • Recruitment
中文

Research

  • Research directions
  • Research Highlights
  • Laboratory for Climate and Ocean-Atmosphere Studies
  • The joint research centre for atmospheric hydrological cycle and weather modification
  • PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)

Research

  • Research directions
  • Research Highlights
  • Laboratory for Climate and Ocean-Atmosphere Studies
  • The joint research centre for atmospheric hydrological cycle and weather modification
  • PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)
当前位置: 首页» Research» Research Highlights

Research Highlights

Clear-Sky Direct Aerosol Radiative Forcing Uncertainty Associated with Aerosol Optical Properties Based on CMIP6 Models

发布时间:2022-04-21
 

Lu Zhang1, Jing Li1, Zhongjing Jiang1, Yueming Dong1, Tong Ying1, and Zhenyu Zhang1


1 Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

 

Abstract: The direct perturbation of anthropogenic aerosols on Earth’s energy balance [i.e., direct aerosol radiative forcing (DARF)] remains uncertain in climate models. These uncertainties critically depend on aerosol optical properties, primarily aerosol optical depth (AOD), single scattering albedo (SSA), and the asymmetry factor g. In this study, we investigate the intermodel spread of DARF across 14 global models within phase 6 of the Coupled Model Intercomparison Project (CMIP6), using unified radiative transfer calculation and aerosol optical parameter assumptions. The global mean DARF for clear sky in 2014 with respect to 1850 is estimated as -0.77 ± 0.52 W/m2 assuming an externally mixed state and -0.68 ± 0.53 W/m2 for an internally mixed state. We further conduct a quantitative analysis and find that globally, for the external mixing assumption, AOD is the dominant factor, whose intermodel spread results in 36% of the total DARF uncertainty. For the internal mixing assumption, SSA becomes the major factor, which also leads to 36% DARF uncertainty. The g parameter and aerosol vertical distribution combined contribute to ∼30% of the DARF uncertainty. Regionally, DARF uncertainty is typically more sensitive to SSA where the absorbing aerosol fraction is high, such as South Asia and central Africa. Substantial differences between model-averaged and observed aerosol optical parameters are still noticed, with external mixing in general yielding closer agreement with observations. Our results highlight the importance of aerosol scattering and absorption properties in DARF estimation.

 

Keywords: General circulation models; Model comparison; Aerosol optical properties; Aerosol radiative effect; Primary aerosol

 

Acknowledgments:We gratefully acknowledge the World Climate Research Programme, through its Working Group on Coupled Modelling, for coordinating and promoting CMIP6 (https://esgf-node.llnl.gov/search/cmip6/). We are grateful to Atmospheric and Environmental Research for providing the RRTM code (http://rtweb.aer.com/rrtm_ frame.html). We acknowledge the AERONET site principal investigators for the data used for this study (https://aeronet.gsfc.nasa.gov/newweb/index.html). This study is funded by the National Natural Science Foundation of China (NSFC) Grant 41975023

 

Citation: Zhang, Lu, Li, Jing, Jiang, Zhongjing, Dong, Yueming, Ying, Tong, and Zhang, Zhenyu, 2022, "Clear-Sky Direct Aerosol Radiative Forcing Uncertainty Associated with Aerosol Optical Properties Based on CMIP6 models" Journal of Climate Vol. 35, No. 10, pp 3007, 1520-0442.

 

 


  

Address: 209 Chengfu Road (5th floor), Beijing, 100871, China Tel: 010-62765802 Fax: 010-62751094 Map route

----Friendship link----
---- Ministry of Education of the People's Republic of China ---- ---- National Natural Science Foundation of China ---- ---- Ministry of Science and Technology of the People's Republic of China ---- ---- School of physics,Peking University ---- ---- PEKING UNIVERSITY ----

Copyright © 2017. Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University