• 中文
  • About us
    About the Department
    Greetings from the Chair
    Administration
    How to find us
    90th Anniversary
  • Faculty
    Fulltime faculty
  • Research
    Research directions
    Research Highlights
    Laboratory for Climate and Ocean-Atmosphere Studies
    The joint research centre for atmospheric hydrological cycle and weather modification
    PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)
  • Education
  • Lectures
    Distinguished Lectures
  • Recruitment
  • About us
    About the Department
    Greetings from the Chair
    Administration
    How to find us
    90th Anniversary
  • Faculty
    Fulltime faculty
  • Research
    Research directions
    Research Highlights
    Laboratory for Climate and Ocean-Atmosphere Studies
    The joint research centre for atmospheric hydrological cycle and weather modification
    PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)
  • Education
  • Lectures
    Distinguished Lectures
  • Recruitment
中文

Research

  • Research directions
  • Research Highlights
  • Laboratory for Climate and Ocean-Atmosphere Studies
  • The joint research centre for atmospheric hydrological cycle and weather modification
  • PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)

Research

  • Research directions
  • Research Highlights
  • Laboratory for Climate and Ocean-Atmosphere Studies
  • The joint research centre for atmospheric hydrological cycle and weather modification
  • PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)
当前位置: 首页» Research» Research Highlights

Research Highlights

Climate and Habitability of Kepler 452b Simulated with a Fully Coupled Atmosphere–Ocean General Circulation Model

发布时间:2017-02-20
 

  Yongyun Hu, Yuwei Wang, Yonggang Liu, and Jun Yang

  Laboratory for Climate and Atmosphere-Ocean Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China; yyhu@pku.edu.cn

  Abstract

  The discovery of Kepler 452b is a milestone in searching for habitable exoplanets. While it has been suggested that Kepler 452b is the first Earth-like exoplanet discovered in the habitable zone of a Sun-like star, its climate states and habitability require quantitative studies. Here, we first use a three-dimensional fully coupled atmosphere–ocean climate model to study the climate and habitability of an exoplanet around a Sun-like star. Our simulations show that Kepler 452b is habitable if CO2 concentrations in its atmosphere are comparable or lower than that in the present-day Earth atmosphere. However, our simulations also suggest that Kepler 452b can become too hot to be habitable if there is the lack of silicate weathering to limit CO2 concentrations in the atmosphere. We also address whether Kepler 452b could retain its water inventory after 6.0 billion years of lifetime. These results in the present Letter will provide insights about climate and habitability for other undiscovered exoplanets similar to Kepler 452b, which may be observable by future observational missions.

  Full text: http://iopscience.iop.org/article/10.3847/2041-8213/aa56c4/pdf

  Citation: Hu, Y., Y. Wang, and Y. Liu, J. Yang, 2017: Climate and habitability of Kepler 452b simulated with a fully coupled atmospheric-oceanic general circulation model.  Astrophysical J. Lett., 835, L6.

  

Address: 209 Chengfu Road (5th floor), Beijing, 100871, China Tel: 010-62765802 Fax: 010-62751094 Map route

----Friendship link----
---- Ministry of Education of the People's Republic of China ---- ---- National Natural Science Foundation of China ---- ---- Ministry of Science and Technology of the People's Republic of China ---- ---- School of physics,Peking University ---- ---- PEKING UNIVERSITY ----

Copyright © 2017. Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University