• 中文
  • About us
    About the Department
    Greetings from the Chair
    Administration
    How to find us
    90th Anniversary
  • Faculty
    Fulltime faculty
  • Research
    Research directions
    Research Highlights
    Laboratory for Climate and Ocean-Atmosphere Studies
    The joint research centre for atmospheric hydrological cycle and weather modification
    PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)
  • Education
  • Lectures
    Distinguished Lectures
  • Recruitment
  • About us
    About the Department
    Greetings from the Chair
    Administration
    How to find us
    90th Anniversary
  • Faculty
    Fulltime faculty
  • Research
    Research directions
    Research Highlights
    Laboratory for Climate and Ocean-Atmosphere Studies
    The joint research centre for atmospheric hydrological cycle and weather modification
    PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)
  • Education
  • Lectures
    Distinguished Lectures
  • Recruitment
中文

Research

  • Research directions
  • Research Highlights
  • Laboratory for Climate and Ocean-Atmosphere Studies
  • The joint research centre for atmospheric hydrological cycle and weather modification
  • PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)

Research

  • Research directions
  • Research Highlights
  • Laboratory for Climate and Ocean-Atmosphere Studies
  • The joint research centre for atmospheric hydrological cycle and weather modification
  • PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)
当前位置: 首页» Research» Research Highlights

Research Highlights

Yongyun Hu et al.: Strong modification of stratospheric ozone forcing by cloud and sea-ice adjustments

发布时间:2016-06-23
 

Yan Xia1, Yongyun Hu2, and Yi Huang1

  1Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Canada

  2Department of Atmospheric and Oceanic Sciences, Peking University, Beijing, China

  Abstract

  We investigate the climatic impact of stratospheric ozone recovery (SOR), with a focus on the surface temperature change in atmosphere–slab ocean coupled climate simulations. We find that although SOR would cause significant surface warming (global mean: 0.2 K) in a climate free of clouds and sea ice, it causes surface cooling (-0.06 K) in the real climate. The results here are especially interesting in that the stratosphere-adjusted radiative forcing is positive in both cases. Radiation diagnosis shows that the surface cooling is mainly due to a strong radiative effect resulting from significant reduction of global high clouds and, to a lesser extent, from an increase in high-latitude sea ice. Our simulation experiments suggest that clouds and sea ice are sensitive to stratospheric ozone perturbation, which constitutes a significant radiative adjustment that influences the sign and magnitude of the global surface temperature change.

  Citation: Xia, Y., Y. Hu, and Y. Huang, 2016: Strong modification of stratospheric ozone forcing by cloud and sea-ice adjustments. Atmos. Chem. Phys., 16, 7559–7567, doi:10.5194/acp-16-7559-2016. 

  

Address: 209 Chengfu Road (5th floor), Beijing, 100871, China Tel: 010-62765802 Fax: 010-62751094 Map route

----Friendship link----
---- Ministry of Education of the People's Republic of China ---- ---- National Natural Science Foundation of China ---- ---- Ministry of Science and Technology of the People's Republic of China ---- ---- School of physics,Peking University ---- ---- PEKING UNIVERSITY ----

Copyright © 2017. Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University