• 中文
  • About us
    About the Department
    Greetings from the Chair
    Administration
    How to find us
    90th Anniversary
  • Faculty
    Fulltime faculty
  • Research
    Research directions
    Research Highlights
    Laboratory for Climate and Ocean-Atmosphere Studies
    The joint research centre for atmospheric hydrological cycle and weather modification
    PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)
  • Education
  • Lectures
    Distinguished Lectures
  • Recruitment
  • About us
    About the Department
    Greetings from the Chair
    Administration
    How to find us
    90th Anniversary
  • Faculty
    Fulltime faculty
  • Research
    Research directions
    Research Highlights
    Laboratory for Climate and Ocean-Atmosphere Studies
    The joint research centre for atmospheric hydrological cycle and weather modification
    PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)
  • Education
  • Lectures
    Distinguished Lectures
  • Recruitment
中文

Research

  • Research directions
  • Research Highlights
  • Laboratory for Climate and Ocean-Atmosphere Studies
  • The joint research centre for atmospheric hydrological cycle and weather modification
  • PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)

Research

  • Research directions
  • Research Highlights
  • Laboratory for Climate and Ocean-Atmosphere Studies
  • The joint research centre for atmospheric hydrological cycle and weather modification
  • PKU AOS – Harvard EPS Climate and Environment Collaborative (CEC)
当前位置: 首页» Research» Research Highlights

Research Highlights

Chengcai Li et al.:A parameterization scheme of aerosol vertical distribution for surface-level visibility retrieval from satellite remote sensing

发布时间:2016-06-21
 

(REMOTE SENSING OF ENVIRONMENT, IF2015=5.881)

  Qianshan Hea, b, Chengcai Lic, , Fuhai Genga, Guangqiang Zhoua, b, Wei Gaoa, Wei Yua, Zhenkun Lia, Mingbin Dua

  aShanghai Meteorological Service, Shanghai, China

  bShanghai Key Laboratory of Meteorology and Health, Shanghai, China

  cDepartment of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

  Correspondence to: Chengcai LI (ccli@pku.edu.cn)

  Abstract

  In this study, a vertical correction method based on a two-layer aerosol model is proposed to estimate the surface-level visibility from satellite measurements of aerosol optical depth (AOD). The meteorological parameters from the re-analysis data of the National Centers for Environmental Prediction (NCEP) are applied to estimate the aerosol layer height (ALH) of the two-layer aerosol model via an automatic workflow. The estimated extinction coefficients near the surface by AOD/ALH over the single point of a lidar site in Shanghai agree well with those of the ground measurements from a visibility sensor, with a correlation coefficient of 0.86 and root mean squared error (RMS) of 0.19 km− 1for the data set from April 18, 2008 to April 30, 2014. The season-long spatial comparison demonstrates that most of the correlation coefficients (90%) are > 0.6, and more than half of the samples (68%) have coefficients higher than 0.7 for the data set from January 1 to April 30, 2014. Dust transportation and higher relative humidity (RH) have been confirmed to be important factors in reducing the accuracy of estimated visibility, as these situations fail to meet the assumptions of the two-layer model. Additionally, the less-rigorous cloud mask algorithm of the Moderate Resolution Imaging Spectroradiometer (MODIS)/AOD might lead to overestimates of AOD, and further underestimating of the surface-level visibility. The spatial variation of temporal correlation coefficients shows that most comparison sites (> 74%) of satellite estimations agree well with the surface-level visibility measurements, with correlation coefficients up to 0.6 during the study period. The northern area of Eastern China presented better agreement than the southern area. This may be related to the complex underlying surface characteristics and higher RH in the southern part. This work will significantly improve the quality of climate simulations and air quality forecasts in Eastern China.

  

  Citation: Qianshan He, Chengcai Li, Fuhai Geng, Guangqiang Zhou, Wei Gao, Wei Yu, Zhenkun Li, Mingbin Du, 2016: A parameterization scheme of aerosol vertical distribution for surface-level visibility retrieval from satellite remote sensing. Remote Sensing of Environment, Vol.181, 1-13

  Download at http://www.atmos.pku.edu.cn/ccli/pdf/HeQS_2016.pdf

  For more publications: http://www.atmos.pku.edu.cn/ccli/

  

Address: 209 Chengfu Road (5th floor), Beijing, 100871, China Tel: 010-62765802 Fax: 010-62751094 Map route

----Friendship link----
---- Ministry of Education of the People's Republic of China ---- ---- National Natural Science Foundation of China ---- ---- Ministry of Science and Technology of the People's Republic of China ---- ---- School of physics,Peking University ---- ---- PEKING UNIVERSITY ----

Copyright © 2017. Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University